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Figure 1: Comparison of the alternating combination of LBD and BCQN (top) with ABCD(BCQN) (bottom) in 3D. The same initialization
is used for the three shown trials: unconstrained problem, two fixed anchors, two fixed endpoints (the second problem of Fig. 18). We report
the number of inverted elements below each snapshot.

Abstract
We present a new algorithm for optimizing geometric energies and computing positively-oriented simplicial mappings. Our
major improvements over the state-of-the-art are: (i) introduction of new energies for repairing inverted and collapsed sim-
plices; (ii) adaptive partitioning of vertices into coordinate blocks with the blended local-global strategy for more efficient
optimization; (iii) introduction of the displacement norm for improving convergence criteria and for controlling block parti-
tioning. Together these improvements form the basis for the Adaptive Block Coordinate Descent (ABCD) algorithm aimed at
robust geometric optimization. ABCD achieves state-of-the-art results in distortion minimization, even under hard positional
constraints and highly distorted invalid initializations that contain thousands of collapsed and inverted elements. Starting with
an invalid non-injective initial map, ABCD behaves as a modified block coordinate descent up to the point where the current
mapping is cleared of invalid simplices. Then, the algorithm converges rapidly into the chosen iterative solver. Our method is
very general, fast-converging and easily parallelizable. We show over a wide range of 2D and 3D problems that our algorithm
is more robust than existing techniques for locally injective mapping.

Keywords: geometric optimization, inversion-free mapping, deformation, mesh parametrization, tetrahedral mesh.

1. Introduction

Computing injective mappings with low distortions on triangulated
domains is a fundamental problem in computer graphics, geometri-
cal modeling, and physical simulations. This problem often results
in non-convex and non-linear optimization of geometric energies
defined in a finite element manner on triangular and tetrahedral
meshes.

The existing solutions to the above problem typically fall into
two major categories: (1) map fixers: algorithms focused on the

injectivity of maps; (2) core-solvers: iterative descent algorithms
focused on minimizing rotation-invariant energies. Map fixers are
aimed at repairing simplices that have folded over (foldovers) and
changed their orientation. The goal of map fixers is to repair all
foldovers of a non-injective map and restraining its geometric dis-
tortions into a finite range. Core solvers start from a one-to-one
initialization and ensure that optimization results remain one-to-
one, at least locally. Efficient designs of map fixers and core-
solvers have been extensively studied by the computer graphics
community. But due to their inherent differences the treatment re-

This is a preprint of an article published in Wiley Online Library
Computer Graphics Forum 2020 The Eurographics Association
The final version is available online at: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14043

https://onlinelibrary.wiley.com/journal/14678659
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14043


Alexander Naitsat, Yufeng Zhu & Yehoshua Y. Zeevi / Adaptive Block Coordinate Descent for Distortion Optimization

Initialization 1-ring GD BCQN SLIM AKVF

Is
o
m
et
ri
c

— AKVF
— SLIM
— BCQN
— 1-ring GD

Figure 2: Free boundary parametrization with a noisy initializa-
tion (intentionally distorted Tutte map without flips). The 1-ring GD
denotes the gradient descent in blocks of single vertices; each block
receives a single GD iteration per cycle depicted in the plot.

mained separate: one would either provide a framework to solve the
foldover problem or the energy minimization problem. Neverthe-
less, both aspects of the problem play crucial role in finding a good
solution to a given geometric optimization. In this paper, we pro-
pose the Adaptive Block Coordinate Descent (ABCD) algorithm
that successfully tackles both problems within the same routine.
Our algorithm achieves state-of-the-art results in distortion mini-
mization even with highly distorted invalid initializations that con-
tain thousands of degenerate and inverted elements. Consequently,
compared with core-solvers, our algorithm is much more robust. At
the same time, compared with recent map fixer methods, our algo-
rithm achieves superior results, making some previously intractable
problems applicable. The core contributions of our algorithm are:

1. Introduction of new distortion measures designed for repair-
ing inverted and degenerate simplices, as well as modification
of classical energies to allow an efficient integration of these
energies into the proposed framework.

2. An adaptive partitioning of vertices into blocks of varying sizes
according to the geometric configuration of the problem.

3. An adaptively blended local-global strategy providing robust-
ness to highly distorted elements, while allowing employment of
state-of-the-art solvers for inducing global deformations.

4. A cured alternating optimization strategy designed to best ex-
ploit contributions 1-3 and provide enough flexibility for our al-
gorithm to be combined with other popular methods. This stage
include number of novel sub-steps, such as an enhanced line
search filtering.

5. Introduction of displacement norm for improving convergence
criteria and for controlling the local-global blending.

2. Problem Formulation and Overview

We compute inversion-free simplicial maps that induce low distor-
tions. Let f : M ⊂Rn→Rm be a piecewise affine mapping defined
on a mesh M with a m-dimensional simplex set C and a vertex set
V, and let xxx ∈R|V |m be the column stack of vertex positions under
f . We express a distortion energy of the mapping f [xxx] as a weighted
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Figure 3: ABCD main stages: 1) Computing descent field of alter-
natively selected distortions D j = F , D̃, defined by (15) and (10);
2) Estimating partitioning threshold K; 3) Vertex partitioning into
blocks B by Algorithm 1; 4) Parallel optimization of (2) in coordi-
nate blocks B ∈ B.

sum over simplices

E ( f [xxx]) = ∑
c∈C

w(c)D ( fc[xxx]) , (1)

where w(c) are simplex weights, usually equal to volume(c), fc is
f ′s component on c and D is a given distortion measure invariant
to rotations and translations of source and target vertices. Denote
by d fc the Jacobian of fc modulo a rigid transformation of c from
Rn to Rm. Then, we address the following distortion minimization
problem for 2≤ m≤ n≤ 3:

argmin
xxx

E ( f [xxx]) , (2)

such that: det(d fc)> 0, ∀c ∈ C, (3)

Axxx = zzz , (4)

where (3) guarantees that f is free of inversions and (4) are the
given positional constraints.

Numerous first and second order techniques for solving (2) and
its unconstrained version have been developed. A typical geometric
solver updates target coordinates xxx via

xxx(t +∆t) = xxx(t)+∆tddd
(
∇xxxE,∇2

xxxE
)
, (5)

where ddd is the descent direction 〈ddd,∇xxxE〉< 0, expressed as a func-
tion of the gradient and the Hessian

∇xxxE =
∂E
(
xxx(t)

)
∂xxx

, ∇2
xxxE =

∂
2E
(
xxx(t)

)
∂xxx2 . (6)

In first order methods, ddd = ddd(∇E) and it is computed, in general,
by preconditioning the gradient with a sparse proxy matrix, i.e., in
unconstrained problems ddd is a solution of a sparse linear system

Hddd =−∇xxxE. (7)

If xxxi are vertex coordinates at iteration i, then updating xxx via (7) is
equivalent to minimizing the following quadratic proxy:

EH(xxx) = E(xxxi)+
(
xxx− xxxi)>∇xxxE +

(
xxx− xxxi)>H

(
xxx− xxxi)/2. (8)

For example, H = I in the gradient descent (GD) [NSZ18; FLG15].
In Sobolev gradient descent (SGD), and in the related Acceler-
ated Quadratic Proxy (AQP) [KGL16], H is chosen to be the rest
mesh Laplacian. The method of Scalable Locally Injective Map-
pings (SLIM) [RPPSH17] extends the local-global parametrization
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[LX*08] to general distortions by introducing a weighted proxy
in the global step, which is equivalent to approximating H by
reweighed Laplacian. The geometric approach of [CBSS17] intro-
duces the Killing operator of discrete vector fields as an isometry-
aware preconditioner (AKVF).

Quasi-Newton methods [ZBK18; LBK17; SS15] optimize a
quadratic proxy constructed from gradients of both the current and
previous iterations, i.e., ddd = ddd

(
∇xxxE i,∇xxxE i−1, . . .

)
. In particular,

Zhu et al. [ZBK18] had proposed Blended Cured Quasi-Newton
(BCQN) strategy of a gradual blending between AQP [KGL16]
and L-BFGS [SS15]. This approach benefits both from the rapid
progress of AQP at the first iterations, and having the super-linear
convergence of L-BFGS in the vicinity of the optimal point.

Similarly, second order methods are based on “Newton” update
step in (5), where ddd is the function of both ∇E and ∇2E. Since,
the problem (2) is highly non-convex, these solvers compute posi-
tive semidefinite approximations of ∇2E, most commonly, using
the Hessian diagonal H = diag

(
∇2E(xxx)

)
in Jacobi gradient de-

scent [WY16]; by projecting m(m+1)×m(m+1) blocks of ∇2E
into PSD cone for each simplex in Projected Newton (PN) methods
[LKK*18; LBK16; TSIF05]. Specifically, in 2D, positive semidef-
inite H can be obtained via complex problem formulation [GSC18;
CW17], or by using the Composite Majorization (CM) [SPSH*17]
technique and the related closed-form expression of 2×2 Jacobian
singular values.

Besides the aforementioned core-solvers, there are techniques
intended for accelerating existing optimization algorithms. For in-
stance, the update step in AQP is equipped with a Nesterov-like
acceleration [Nes83] that approximates xxx(t) in (5) by an affine
combination of the results from the current and previous itera-
tions, xxx(t) = (1+ θ)xxxi− θxxxi−1. Progressive parametrization (PP)
[LYNF18] accelerates core-solvers by decomposing an initial map
into intermediate mappings with bounded singular values. Ander-
son acceleration [PDZ*18] adopts numerical analysis techniques
for geometric optimization by treating solvers as fixed-point iter-
ations. The method is intended for alternating local-global algo-
rithms, such as [BDS*12; BML*14], where in the local step vertex
coordinates are projected into varying sets of positional constraints.

Despite the abundance of techniques, the vast majority of the
existing solvers are iterative algorithms that require an inversion-
free initialization of f in (2). Moreover, in most methods f [xxxi]
needs to be kept free of foldovers for each iteration i ≥ 0. In view
of the above limitation, different strategies have been proposed
to keep f satisfying (3) during the optimization. These strategies
include: designing distortions with flip barriers [SS15; FLG15],
inversion-aware line search [SS15], the recently proposed barrier-
aware line search filtering [ZBK18], and employment of scaffold
meshes [LKK*18; JSP17].

For unconstrained 2D distortion optimization, such as
parametrization of disc-topology surfaces with free bound-
aries, the required positively oriented initialization f 0 is readily
available via the Tutte’s embedding [Tut63] and its variants
[Flo03]. However, computing feasible f 0 may still be challenging
in number of geometry processing applications, including 2D and
3D shape deformations with positional constraints, shape matching

and volumetric parametrizations. Moreover, Tutte’s mapping to
unconvex regions cannot guarantee (3), while mapping complex
shapes to a disc and other convex domains usually yields huge
isometric distortions. Thus, producing f 0 free of foldovers often
costs many more additional iterations for a typical parametrization
algorithm. It therefore seems that mapping to domains that match
the structure of a source mesh should be a much better starting
point if the algorithm can fix occasional foldovers. Although there
is a number of recent studies on embedding triangle mesh onto
non-convex planar domains, our algorithm has unique properties: it
operates both in 2D and 3D; it employs hard positional constraints,
and therefore, unlike Boundary First Flattening (BFF) [SC18], it
interpolates the exactly prescribed boundary shape; ABCD updates
only vertex coordinates and, in contrast to the recently introduced
Progressive Embedding (PE) [SJZP19], our algorithm does not
involve mesh re-triangulation.

Among the recent studies that explicitly address unfeasible ini-
tializations are: bounding distortion mappings (BD and LBD)
[AL13; KABL15] and simplex assembly (SA) [FL16]. BD solves
the quadratic problem of constructing an optimal projection of f on
the bounded distortion space, whereas LBD enhances this strategy
by linearization of the BD space constraints and pre-factorization of
the obtained KKT matrix. SA [FL16] optimizes significantly larger
problem than (2), since its objective variables are linear and trans-
lation components of fc represented, per simplex, by n×n+m un-
knowns instead of commonly employed m coordinates per vertex
(n ≥ m and, in general, |C | is much larger than |V | according to
Euler formula).

The method of [KABL14] can start with trivial maps and con-
verge to prescribed positional constraints, but it suffers from slow
performance of semidefinite programming (SDP). Weber et al.
[WMZ12] introduced the Least Square Beltrami (LSB) energy for
computing extremal quasi-conformal mappings. Optimization of
LSB can be initialized with foldovers, since the energy is finite on
inverted triangles. However, this method is limited to 2D and it does
not extend to other popular energies, such as Symmetric Dirichlet
energy Diso [SS15] or AMIPS [FLG15].

The Autocuts algorithm [PTH*17], designed for a user-assisted
global parametrization, can handle non-injective initializations be-
cause it treats the input mesh as a triangle soup. Nevertheless, the
algorithm requires a consistent initial orientation of deformed tri-
angles. Moreover, this method operates on disassembled simplices
which, similarly to SA, significantly increases number of objective
variables. Although the underlining homotopy approach for multi-
objective optimization performs well on middle resolution meshes,
Autocuts supports only soft positional constraints in 2D and does
not extend to volumetric domains.

We propose a novel algorithm, Adaptive Block Coordinate De-
scent (ABCD), aimed at robust distortion optimization. By robust-
ness we mean that our algorithm is capable of solving challenging
problems that previously available methods struggle with. These
problems include cases of highly distorted, non-locally-injective,
noisy initializations, and mapping with complex positional con-
straints. Our algorithm combines the best of core-solvers (CM, PN,
BCQN, AKVF, SLIM) and map fixers (BD, LBD, SA) into uni-
fied Algorithm 3. We show that, over a wide range of test cases,
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Figure 4: A typical ABCD work-flow: initialization with flips (in
yellow), fixer, optimizer and final convergence. Dashed lines along
descent directions depict length of line search intervals (22).

ABCD achieves superior results than mere cascade or alternating
combinations of core-solvers and map fixers. Moreover, since our
algorithm is very general, it can be further improved by employing
novel acceleration techniques, such as PP [LYNF18].

For standard unconstrained problems our algorithm behaves ex-
actly as an integrated core-solver (BCQN, AKVF, PN, etc.), ex-
cept for a very short period, typically 2-3 first iterations, for which
computational cost is negligible. In the presence of highly distorted
invalid initializations, ABCD passes through two phases: the first
one of cleaning foldovers, where distortions are optimized in coor-
dinate blocks of varying sizes, and the second stage of optimizing
a positively oriented map, during which ABCD typically behaves
as a global solver. Our algorithm exhibits such flexibility because,
at each cycle, we adaptively modify coordinate blocks and switch
between different energies. Unlike the common notion of optimiza-
tion theory, where “adaptiveness” is referring to a proper selection
of block coordinate frames, we consider, instead, an adaptive strat-
egy of the block partitioning and an adaptive blending of local-
global solvers.

3. Modifying Distortion Measures

Distortion measures considered in (2) are rotation invariants which,
according to [RPPSH17; NSZ18], can be expressed as functions of
signed singular values σ1, . . . ,σm of the Jacobian d fc:

D( fc) =D(σ1, ...,σm) . (9)

We assume w.l.o.g. that only σ1 can be negative in the signed
SVD of the Jacobian, d fc =Udiag(σ1, ...,σm)V>. Thus, on a non-
degenerate simplex c, sign(σ1) = sign(det(d fc)).

The most common energies, considered in geometric optimiza-
tion, are measures of isometric (length-wise) [CPSS10; SS15;
FLG15; NSZ18] and conformal (angle-wise) [HG00; LPRM02;
DMA02; FLG15] distortions. Usually, due to existence of a barrier
term, these measures become infinite when det(d fc) ≤ 0. While
this prohibits appearance of new foldovers, it also prevents opti-
mization from fixing the existing ones. Therefore, we aim to mod-
ify existing energies in such a way that both tasks of fixing invalid
simplices (inverted or collapsed) and preventing generation of new
ones are possible within the same procedure.

Denote by sc the orientation of simplex c at the iteration (i−1),
i.e., sc = sign

(
det d f i−1

c
)
; then we modify the original measure D

as follows:

D̃ ( fc) =


D(σ1, ...,σm)

∞
minD

σ1 > 0, sc > 0 ,
σ1 ≤ 0, sc > 0 ,
sc ≤ 0 ,

(10)

where minD is the absolute minimum of distortion D. Namely, at
each iteration we filter out the contribution of simplices that were
previously inverted, while on valid simplices D̃ equals the original
measure plus the barrier term in order to prevent new foldovers.
This approach enables an efficient alternating optimization of clas-
sical rotation-invariant energies and of measures designed for fix-
ing invalid simplices (map fixer measures) without badly interfer-
ing with each other. So that our algorithm alternates between the
two phases: minimization of map fixer measures and optimization
of distortions, constructed by (10). We refer to these two phases as
the fixer and optimizer phases, respectively. Since orientation of a
zero-volume simplex is not well-defined, we consider inverted sim-
plices (flips) and collapsed simplices as the two separate classes of
illegally deformed elements. Next, we describe how map fixer mea-
sures are devised to correct each of the two illegal deformations:

Inverted simplices: Assuming the positive orientation of the
source elements, a simplex c is inverted under f if

det(d fc) = ∏σ j < 0 . (11)

Rather than using binary measures, or infinite barrier terms that can
easily block optimization progress, we penalize both the number of
foldovers and their target volumes (areas). Since foldover volumes
are negative and proportional to detd fc, we consider the following
flip penalty measure:

Dflip(σ,Λ) =

{
Λ−∏σ j ∏σ j ≤ 0 ,
0 else ,

(12)

where Λ≥ 0 is the uniform penalty cost of an inverted simplex.

Collapsed simplices. Similarly to Dflip, the collapsed simplex
penalty is the cost function of nearly zero-volume target elements

Dcollapse(σ,Λ) =

{
Λ ∃ j : |σ j|< ε ,

0 else ,
(13)

where ε is the singularity threshold. Unlike (12), Dcollapse con-
tains no smooth terms, and thus we provide a separate definition
of its pseudo gradient by devising how σ should be modified to un-
fold a degenerate simplex. Specifically, if dim

(
Ker(d fc)

)
= k, then

σm−k+1, . . . ,σm = 0, and thus ∂Dcollapse /∂σ j should be non-zero
for m− k + 1 ≤ j ≤ m. Consequently, we set gradient entries as
follows:

j = 1, . . . ,m :
∂Dcollapse

∂σ j
=

{
−1 |σ j| ≤ ε ,

0 else .
(14)

For processing all invalid elements with a single measure, we
combine (12) and (13) into the invalid simplex penalty:

F (σ,Λ) =

{
Dflip(σ,Λ) σ1 < 0, σm ≥ ε ,

Dcollapse (σ,Λ) else ,
(15)

where we set a higher priority for penalizing flips, since minimiz-
ing (12) is a more complex geometric problem than unfolding col-
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Figure 5: Comparing ABCD(AKVF) (bottom) with other methods and with simplified variants of ABCD(AKVF). Top to bottom: alternating
optimization of LBD and AKVF; global ABCD version (CD); ABCD without blending that includes constant K =∞ and constantly alternat-
ing thresholds K =∞, 0; ABCD with F(σ,10) and F(σ,0). Each snapshot is annotated with the number of flipped and collapsed triangles,
denoted by ‘f.’ and ‘c.’, respectively.

lapsed elements. Measure (15) is design to behave well in GD. In
particular, GD minimization of F either flips back foldovers, or
shrinks them to minimize magnitudes of their volumes (Fig. 4).

Note that despite F having non-differentiable points and sepa-
rate definitions of energy values and energy gradients, map fixer
measures are fully compatible with the geometric optimization
framework. Particularly, Algorithm 3 receives D and ∇D in sepa-
rate inputs and it can handle non-differentiable measures as long as
these two inputs are consistent.

At first glance, it seems reasonable to set Λ� 0 in (15), since
we are interested in minimizing the total number of invalid ele-
ments, rather than merely decreasing their total volume. However,
the smoothness of EF = ∑w(c)F (σ,Λ) decreases in Λ. If Λ is
large enough, then EF is approximately equal to the number of
invalid simplices times Λ. This quantity has a combinatorial struc-
ture, and thus minimizing EF with common geometric solvers is
not efficient for large Λ. Therefore, on average, the most significant
progress is achieved by setting Λ to be a tiny positive number. Our
experiments with different values of Λ are depicted in Fig. 5 and
Fig. 24 in the supplemental.

By definition, ∇F is non-zero only on vertices of invalid el-
ements, often distributed in patterns of “islands” surrounded by

positively oriented simplices (see second row of Fig. 17). Follow-
ing this observation, we suggest to construct block partitioning in
which vertices sharing only inverted simplices and the rest of ver-
tices are put in separate blocks. As discussed in the next section,
our adaptive coordinate descent strategy has a number of apparent
advantages over purely global or local approaches.

4. Local Versus Global Optimization

While most of optimization techniques are focused on approximat-
ing (1) with proxy energies, or on designing gradient preconditioner
in (5), we adopt a new viewpoint and address a different aspect of
the problem: How to divide objective variables xxx into blocks to at-
tain more efficient and robust optimization?

The vast majority of existing geometric solvers are global meth-
ods that update entire set of target coordinates simultaneously.
Among the few purely local methods are block coordinate descent
(BCD) strategies with constant small blocks [HG00; FLG15; FL16;
NSZ18]. Note that our terminology here is different from the com-
mon notation of local-global solvers, such as [PDZ*18; RPPSH17;
LX*08], where an update (5) is performed in the global stage, while
auxiliary properties per simplex are computed in the local one. We
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Algorithm 1 Vertex partitioning into blocks
Input:
• Mesh (V, C) with source and target coordinates yyy and xxx.
• Descend field ddd and partitioning threshold K.

Output: Vertex blocks B.

1: E←[ ∅.
2: for v ∈ V do
3: for u ∈ Neighbours(v) do
4: Add E← [ E∪

{
{u,v}

}
if Luv(ddd, xxx, yyy)≤ K and u∼ v.

5: end for
6: end for

7: (V, E)←[ Graph of nodes V and edges E.
8: B← [ Connected components of (V, E).

consider both the locality and the globality with respect to the se-
lection of xxx’s coordinate blocks in (5).

To highlight the importance of the raised question, consider a
toy model, depicted in Fig. 2, where a simple 1-ring block gradient
descent [HG00; NSZ18] easily outperforms much more advanced
global solvers. In general, the global strategy works well when de-
scent direction ddd is a smooth vector field. However, a noisy initial-
ization produces chaotic gradients. Therefore, in this case, a global
descent update of (5) can easily get stuck in the line search stage,
since neighboring vertices may be forced to move in completely
random directions. In particular, repairing initializations with many
flipped and collapsed simplices often introduces highly non-smooth
gradients and thus cannot be effectively handled by a global ap-
proach alone. Although [ZBK18] proposed some line search en-
hancements, where components of the global descent field ddd are
rescaled to increase the line search range, the global update of xxx
along ddd may still be subjected to an adverse coupling of vertices in
highly distorted initializations. Moreover, a sufficiently high noise
level in vertex position often leads to poor preconditioning due to
extremely ill-conditioned approximate Hessian. Hence, this issue

cannot be solved solely by filtering line search directions or using
other related approaches.

Another motivation for using an intelligent block partitioning
is derived from observing standard optimization problems with
Dirichlet positional constraints. This type of constraints often re-
sult in a natural block partition, where inner block boundaries pass
through fixed vertices (anchors) with vanishing descent directions.
Similar configurations occur in minimizing map fixer measures,
since they have non-zero gradients only on vertices adjacent to in-
valid elements. Optimizing one block of vertices has no effect on
vertices in another block if the boundary between the two blocks
is locked (see Fig. 6 bottom). Therefore, in such cases, it is more
computationally efficient to employ BCD inherent parallelism for
processing different blocks of vertices in parallel.

However, local methods are not effective in dealing with prob-
lems where the decrease in a distortion energy can be achieved only
by modifying large groups of vertices, at once. These cases often
include complex shape deformations, such as the one depicted in
Fig. 6, and surface parametrization with standard harmonic initial-
izations. Apparently, as illustrated by Fig. 5, distortion minimiza-
tion can have mixed cases, where neither purely global, nor local
approaches are suitable, and thus some blending of two opposite
strategies should be adopted.

5. Adaptive Block Partitioning

In this section, we propose on adaptive block partitioning strategy
that solves problem (2) separately over blocks of target vertices{

xxxB|B ∈ Bi}, where the subscript in xxxB denotes the column stack
of coordinates of vertices in B and the superscript in Bi denotes that
the block partitioning is recomputed for each iteration i. Similarly,
we denote by dddv, xxxv and yyyv the search direction, target and source
coordinates of a single vertex v ∈ V, respectively.

Our partitioning scheme is designed to disconnect static vertices
V0 = {v ∈ V | dddv = 000} from the rest of the mesh and to group
non-static (free) vertices V\V0 into edge-connected blocks with
a sufficiently smooth descent field. More precisely, assume that
ddd
(
∇E,∇2E

)
is the descent direction and denote by u ∼ v that u

and v are neighboring vertices such that both are in V0 or in V\V0.
Then, we divide vertices in such a way that each block B is a con-
nected set with respect to edges

{
{u,v}| u ∼ v

}
and it satisfies:

∀u,v ∈ B : ‖dddu−dddv‖2 ≤ K ‖xxxu− xxxv‖2 , (16)

where K is the adjustable threshold value that controls maximal
deviation in descent direction. Since “geometric information” can-
not propagate through static vertices, a block surrounded by edges
{u,v}, u� v, can be updated independently of the rest of the mesh.
Motivated by this observation, we construct a connectivity graph
(V,E) in Algorithm 1 by iterating over vertices u∼ v and measur-
ing the following quantity:

Luv = ‖dddv−dddu‖2 ‖yyyv− yyyu‖2 ‖xxxv− xxxu‖−1
2 . (17)

The term ‖yyyv− yyyu‖ is chosen so that it normalizes distances in the
target domain. As specified in Algorithm 1, {u,v} is an edge of E
if u ∼ v and Luv ≤ K, and blocks Bi are connected components of
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Figure 7: Constrained parametrization of a space fitting curve. The source and target anchor positions are shown in the top-left corner.
Free vertices are initialized by Tutte embedding. ABCD(AKVF) results (left) are compared with other methods (right): standalone conformal
LBD, alternating combinations of LBD with AKVF and BCQN, and SA. All the methods, except LBD, optimize isometric distortions.

(V,E). Static blocks, obtained in Algorithm 1, include anchors and
vertices that share only simplices with zero distortion energy.

Our default approach to controlling vertex partitioning in Algo-
rithm 1 is to set K =∞. In this case, blocks Bi are connected com-
ponents of the graph

(
V, {{u,v}| u ∼ v}

)
. If B1, . . . ,BN are free

blocks, obtained in this partitioning scheme, then optimizing sep-
arately these blocks is more effective than using a global solver
because BCD methods update target coordinates in (5) with differ-
ent step sizes ∆tB1 , . . . ,∆tBN . This statement is proved in Appendix
A. Note that if there are no inversions, then setting K =∞, in most
cases, results in a global optimization of unconstrained vertices.
Next, we discuss another strategy in which parameter K is modified
to control further partitioning of free vertices into smaller blocks.

5.1. Local-global blending

In continuous settings, condition (16) is equivalent to requiring ddd to
be a K-Lipschitz (continuous) function of xxx in B. The block selec-
tion rule (16) is motivated by the well known fact that optimization
of K-Lipschitz functions converges fast for small K. However, a fast
convergence of distortion energy in small blocks does not guarantee
the same for the total energy (1), since it may take time for “infor-
mation” to propagate from one block to another. Therefore, param-
eter K should be well tuned to obtain an optimal trade-off between
the number of blocks and the smoothness of ddd, obtained in each
block. A simple approach to control BCD is to alternate between
number of constant thresholds parameters. For instance, one can
alternate between global optimization and the finest partitioning,
achieved by setting K = 0. However, this strategy is often wasteful,
since, as illustrated by Fig. 5, a significant part of the obtained it-
erations can be ineffective or even counterproductive. Moreover, as
explained in Section 4, using purely global approach often results
in slow progress at the beginning of the optimization, due to the
presence of highly distorted elements.

We propose to estimate an optimal parameter K for vertex par-
titioning by means of the gradual blending between two oppo-
site strategies: 1) partitioning into connected components of ‘∼’,

obtained if K ≥ Lmax = max
u∼v
Luv; 2) fine partitioning into small

blocks, obtained for a low value of K, which we denote by Lmin.
We refer to the proposed approach as local-global blending (LGB).
Starting with K1 = Lmax and K2 = Lmin at the first and second
iterations, we steadily update partitioning thresholds Ki for next it-
erations according to the observed progress toward achieving an
optimal number of coordinate blocks.

Assume that P1 and P2 are estimates of the optimization
progress achieved at the first two iterations, respectively. Then,
R1/2 = P1 /P2 is the rate by which the first iteration outperforms
the second one. Our blending procedure is designed to either in-
crease or decrease the initial coefficients K1, K2 in such a way that
their values are changed in proportion to R1/2. The same process
is repeated for each successive pair of parameters (K2s−1, K2s),
s ≥ 2. That is, we compute K3 and K4 according to Algorithm 2
at the third iteration, then we apply the algorithm again at the fifth
iteration to compute (K5, K6) as a function of R3/4, K3 and K4.
This process is repeated until the blending termination criterion is
reached (see Section 7.4).

It is difficult to predict how the non-linear optimization (2)
evolves by observing energy values or energy derivatives alone. In
fact, a slight modification of a single nearly-collapsed simplex may
consume more energy than a complex deformation of the entire
shape. We therefore, estimate optimization progress P i by observ-
ing both the decrease in the relative energy

∆E i =
E(xxxi−1)−E(xxxi)

E(xxxi−1)
, (18)

and the magnitude of non-rigid motion by which target vertices
are moved. We refer to the latter quantity as displacement norm,
defined via Frobenius norm as follows:

Dispi =
∥∥xxxi− xxxi−1−Proj

Ker
(

xxxi−1
)(xxxi− xxxi−1)∥∥

Fro , (19)

where Ker
(
xxxi−1) denotes the linear space of rigid transformations

of the target shape [CBSS17].

Fig. 8 depicts optimization progress and plots partitioning
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Algorithm 2 Local-global blending (LGB)
Input:
• Partitioning thresholds K1, K2 of the previous two iterations.
• Global-local performance ratioR.
• Lmax = maximum of coefficients in (17).

Output: Thresholds K3, K4 for the next two iterations.

1: if R≥ 1 then
2:

(
K3, K4)←[ (Lmax, K1)− 1

R
(
Lmax−K1, K1−K2).

3: else
4:

(
K3, K4)←[ (K2 +R(K1−K2),RK2).

5: end if

678 blocks 3 blocks

11 blocks

75 blocks 14 blocks

1 block804 blocks

Optimizer iterationsFixer iterations

Fixer iterations Optimizer iterations

even
odd

even
odd

Figure 8: Normalized partitioning thresholds (K/Lmax) computed
by Algorithm 2 for distortions F (left) and D̃iso (right). Snapshots
are colored according to vertex partitioning.

thresholds, computed by Algorithm 2. Further details of the local-
global blending are presented in Appendix B.

6. Cured Alternating Optimization

In this section, we address the problem of optimizing multiple
distortion measures. The main challenge in implementing ABCD
stems from the fact that the algorithm copes with minimization of
two potentially competing measures — distortion measures in a
fixer phase (e.g., F) vs distortion measures in optimization phase
(e.g., isometric and conformal distortions) — reducing one might
temporarily increase the other measure. Denote by E1 and E2 dis-
tortion energies of these two measures, obtained according to (1).
One has to be cautious about how to combine E1 and E2 into a sin-
gle optimization scheme. Roughly speaking, there are three options
to be considered:

• Processing measures in a cascade, i.e., optimizing the first en-
ergy till convergence before moving to the next one;
• Combining all measures into a single objective. For example,

optimizing a sum of energies

Esingle(xxx) = α1E1(xxx)+α2E2(xxx) ; (20)

• Processing measures in an alternating manner. That is, repeat-
edly cycle through E1 and E2.

The cascade approach is not robust enough because, often, there are
inversions that cannot be repaired by fixer alone without deforming
valid simplices.

Often, minimizing a single objective (20) is not productive, since
vertex positions can be locked easily in the regions of vanishing or
inconsistent descent directions. Although alternating optimization
of different energies has no guaranties to avoid similar difficulties,
we found that the alternating scheme works best. Figs. 7, 17 and
18 show that this option is much more robust than the others. In
fact, in all these trials, we have not encountered any instances in
which the optimization got stuck. Even for hard constrained prob-
lems with randomized initializations, optimization proceeds until
convergence with no trouble. We posit that the reason for such
a remarkable performance of the algorithm is the combination of
distortion enhancements, introduced in Section 3, and our adap-
tive block partitioning method. In particular, our modified distor-
tion measures significantly reduce any possible instabilities due to
competing measures of the different optimization phases. In addi-
tion, our partitioning strategy avoids vertices being interlocked by
allowing a separate processing of valid and invalid simplices.

It is important to mention that our algorithm is based on inexact
block coordinate minimization of each individual measure E j . That
is, we optimize each block for a small number of successive itera-
tions and repeat this process before the algorithm proceeds to the
next measure in the queue. This is in contrast with the approach in
which E j, in its turn, is minimized until convergence or up to the
point where the progress is lost. Advantages of the inexact approach
were observed in number of recent studies [TRG16; FLG15]. When
optimizer and map fixer distortions are alternatively optimized us-
ing the inexact approach, these measures support each other in a
straightforward manner.

When the minimization of (20) is getting stuck, some recent pa-
pers propose to try to smoothen the objective more and more, until
the optimization is able to resume again. This strategy may work
well in Autocuts algorithm [PTH*17], since it is flexible enough
to split problematic regions into disconnected sets. However, our
tests show that the single objective approach is much less effec-
tive in seamless parametrization, and in parametrization with given
cuts, as well as in more general 2D and 3D applications, where
neighboring simplices cannot be disassembled. The uniqueness of
ABCD approach is in preserving target mesh topology during the
entire optimization. In fact, dividing the vertex set into blocks in
our algorithm can be considered as a “weak” separation between
simplices, which, unlike the standard simplex disassembling, does
not duplicate even a single vertex.

7. ABCD Optimization Procedure

We are finally in position to present the full ABCD implementa-
tion, whose pseudo code is given in Algorithm 3. This implemen-
tation integrates all the introduced strategies into four major steps,
illustrated schematically in Fig. 3. In addition to these stages, our
procedure includes a number of sub-steps described below. Some
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Figure 9: Left: Comparing ABCD(PN) with LBD+PN and SA for a planar problem, initialized with flips. We used the following parameters
for LBD: finite unbounded condition number σ1/σ2 <∞ and σ1/σ2 < 1016. Middle: Running SA with first six ABCD iterations to solve
the failure case of SA from Fig. 17. Right: Using scaffold meshes to induce a globally injective map in ABCD(PN). Showing the two stages:
anchors are moved to initialize the problem (top), all inversions are repaired (bottom).

of these sub-steps are unique for our approach, whereas others are
well known methods that we have adjusted to our needs.

7.1. Energy sequence specifications

To achieve its goal, the list of energies in ABCD should contain
both an invalid simplex penalty (15) and an optimizer distortion D̃,
defined according to (10). In our experiments, we minimize ener-
gies F and D̃ and pick a small number of successive iterations n j
for each measure to exploit best the alternating optimization. We
always begin with F to provide a better starting point for the opti-
mizer.

Not that the exact mix of the energies can be very general and
there is also some flexibility in setting optimization parameters. We
explore a more general configurations for ABCD in Table 1 and in
Fig. 24 in supplemental. According to these results, our algorithm
behaves consistently across different settings.

7.2. Core-solver specifications

Each energy E j , can, in principle, be minimized by a different
solver in Algorithm 3. So we can have S1 and S2 solvers, where
each solver should meet the following two criteria: (i) it optimizes
rotation invariant distortions; (ii) it is a line search based, i.e., it
modifies vertex positions along the obtained descent direction. Al-
though very general solvers can be used, it is important to keep in
mind two things related to their usage:

• Often, at the beginning, iterations include one-ring vertex blocks
in which expensive core-solvers lose their efficiency. After ex-
perimenting with various scenarios and estimating an average
time required for solving (7) in first and second order methods,
we suggest GD as a solver of choice for optimizing a single ver-
tex block. Note that, in general, small blocks disappear soon after
all elements attain positive orientation.

• We also recommend to use GD for minimizing F . A simple
GD actually works better for this measure than more advanced
solvers, both when optimizing over small and large blocks. The
reason for this is that F is specifically designed to fit GD,
whereas state-of-the-art solvers, such as CM or SLIM, are de-
signed to minimize isometric and conformal distortions. More-
over, in GD, vertices with vanishing gradients belong to static
blocks, since they have a zero descent direction. As a result,
ABCD fixer with GD updates only vertices that share invalid
elements. Therefore, if only a small fraction of simplices are
flipped, then fixer iterations run much faster with GD than with
other solvers.

7.3. Enhanced line search filtering

The line search sub-step is aimed at modifying vertex coordinates
for the next iteration along the given block descent field, i.e., xxxi+1

B =

xxxi
B +∆t i

Bdddi
B . We use the Armijo backtracking search to estimate a

sufficiently good minimizer

∆t i
B = argmin

t∈[0,Tmax]
E(xxxi

B + tdddi
B) . (21)

We compute Tmax in (21) differently for map fixer measures and for
optimizer distortions, defined by (10). For optimizer distortions, we
employ the filtering of [SS15] over valid elements

Tmax = (1−δ
+)t+B , (22)

t+B = min
c∈C+(B)

{∞, t > 0 |det(d fc[t]) = 0} , (23)

where C+(B) denotes the set of positively oriented simplices that
share vertices in B, d fc[t] is the Jacobian of c, induced by mapping
vertices in B to xxxi

B + tdddi
B, and δ

+ > 0 is a small number that we
choose to avoid numerical errors on nearly-collapsed elements.

Denote by C−(B) the set of inverted simplices adjacent to ver-
tices in B. Then, for map fixer distortions, such as F , the length
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Figure 11: Testing ABCD on randomly generated deformations
that include 600 trials of constrained parametrization with ran-
domly placed anchors (top) and 600 trials of planar shape defor-
mation with fixed boundary and randomized initialization of in-
teriors (bottom). We tested 100 problems with Eigen library for
three resolution levels: 2K, 30K and 115K triangles for the ele-
phant model; 6K, 24K, 100K for the octopus. Left: Average num-
ber of flips in ABCD(PN) as a function of the runtime (vertical bars
represent the standard deviation). Right: the number of failures en-
countered in a hundred trials of ABCD(BCQN) and ABCD(PN).

of the search interval is set to Tmax = (1− δ
−)t−B , where t−B is the

minimum of the right side of (23), computed over C−(B), and δ
−

is a negative number. Here we use δ
− < 0 instead of δ

+ because
often a minimizer of EF (xxx

i
B + tdddi

B) lies outside the interval [0, t−B ].
See Fig. 4 for an illustration of the line search step.

7.4. Termination criteria

Unlike global solvers with a single objective, ABCD has several
termination criteria — to stop processing of a current block, a cur-
rent measure and the entire optimization, and the special criteria for
terminating or resetting the LGB. A successful operation of ABCD
should encounter two phases: the first one of cleaning foldovers
and the final one of D̃ convergence. The first phase is completed
when F vanishes, and further processing is devoted solely to D̃.
Thus, the termination of an individual measure is claimed when its
average value reaches the optimum. The final convergence criteria
is met by either reaching the maximal iteration number (imax), or
by arriving at sufficiently accurate solution. To recognize such so-
lution, we employ both the characteristic gradient (perimeter) norm
[ZBK18] and the average of the proposed displacement norm (19).
That is, we stop if the following two criteria are met:

∑
j
‖∇E j‖< ε1 ∑

j
Char(E j) ,

Dispi(xxx)
Σw(c)

< ε2 , (24)

where Char(E j) denotes the characteristic gradient norm of E j. Al-
though using Char(Ei) is more robust than a direct gradient toler-
ance, we found that characteristic norm can still lead to incorrect
termination claims if ε1 is too high, or to redundant iterations if
the threshold is too small. As exemplified by Fig. 10, we can solve
failure cases of the perimeter norm criterion by adding the displace-
ment norm check, since it provides a simple, yet reliable, way for
ensuring the absence of any further progress.

We use (24) for terminating optimization in blocks, too. How-
ever, we bound block iterations by a small number b j, to follow
our paradigm of inexact optimization. To minimize redundant op-
erations in non-optimally selected blocks, we start with b j = 1 and
increment it at each cycle. Note that the impact of b j disappears
once block partitioning reaches a steady state. We stop updating
parameters K by Algorithm 2 after the number of blocks in even
iterations becomes equal to that of odd iterations. However, we al-
ways track the progress over last iterations and, if there is no de-
crease in a distortion energy or in the number of invalid elements,
then the thresholds K are reset to their initial values.
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#triangles #invalids fixer total standard fixer total standard
(a) 48964 22 0.99 6.87 8.09 0.87 9.22 11
(b) 91912 25 3.42 12.1 15.8 1.72 15 19.5
(c) 94736 9 4.46 10.9 17.9 1.68 9.52 17.8

91976 13 22.2 23.4 13.6 20.8 21.3 17.8
91976 1 0.38 5.82 12 0.43 8.36 15.8
91952 11 3.38 9.59 11.3 3.56 12.8 14.7
95880 3 1.63 6.83 12.6 1.37 9.02 15.5
5816 18 0.4 1.67 0.92 0.372 1.75 0.63

Timing with Pardiso (sec.) Timing with Eigen (sec.)

(a) (b) (c)

ABCD is faster 
ABCD is slower 

time ratio 

Figure 12: Using conformal flattening as a starting point for iso-
metric parametrization. We depict few samples from our experiment
in which BFF conformal maps contain flipped or collapsed trian-
gles. Top: BFF maps. Middle: Isometric parametrization, obtained
by ABCD(PN), initialized with BFF. Bottom: The table compares
the speed of our method (‘total’) with the speed of the standard iso-
metric parametrization with PN solver, initialized by Tutte (‘stan-
dard’). The histogram depicts runtime ratio of our method and the
standard one — when the ratio is less than one our method is faster.

7.5. Implementation

We have written the main body of Algorithm 3 in Matlab for at-
taining a highly customizable interface that supports multiple core-
solvers (GD, AKVF, BCQN, PN) and different variants of ABCD.
Critical parts of the code were implemented in C++. We reimple-
mented AKVF and modified existing BCQN code to fully integrate
these core-solvers with ABCD. The parallel version of our code
supports PN solver and it is based on [CM83] graph coloring al-
gorithm. We have tested Eigen and Pardiso libraries to solve (7) in
ABCD(PN). We report runtimes for ABCD(PN) in Figs. 9, 14, 12,
15, 16 and in Figs. 26, 21 and 24 in the supplemental.

8. Results

Since our algorithm unifies map fixers and core-solvers into a
single framework, we compare our results with methods from
both categories. To make a fair comparison, we examine different
core-solvers for ABCD (BCQN, PN, AKVF, GD) and alternating
combinations of state-of-the-art map fixers and core-solvers (e.g,
LBD+BCQN, LBD+AKVF, LBD+PN, SA). To compare itera-
tions of these methods with ABCD, we consider global solvers as
BCD applied on a single bock containing the entire vertex set. We
rearrange alternating iterations of global solvers into the hierarchi-
cal structure of Algorithm 3, and then count overall number of b j
loops (line 9 of Algorithm 3).

Algorithm 3 Adaptive block coordinate descent (ABCD)
Input:
• Source mesh (V, C) and vertex initialization xxx0.
• Distortions D1 (fixer) and D2 (optimizer).
• Core solvers S1 and S2 with n1 and n2 successive iterations.

1: Initialize block iterations (b1, b2) and thresholds (K1, K2).
2: repeat {starting with i = 0}
3: for j = 1, 2 do {n j times each}
4: E j← [D j energy of f [xxxi] according to (1).
5: if average(E j)≤minD j continue.
6: ddd← [ descent direction of E j attained by S j.
7: {xxxi

B}B∈B←[ BlockPartitioning(K, ddd) via Algorithm 1.
8: for B ∈ B in parallel do
9: xxxi+1

B ← [ solve (2) in B by S j with b j max iterations.
10: end for
11: i←[ i+1.
12: Update b j and K j. [without blending use K j =∞]
13: end for
14: until (24) is true for each E j or i≥ imax.

We test meshes with different numbers of elements and sum-
marize our results in Figs. 5, 7, 11, 13, 17 for 2D problems and
in Figs. 1, 18 and 16 for volumetric problems. We annotate our
results as follows: ABCD(S) denotes that GD and S are the fixer
and optimizer solvers, respectively; S1 + S2 refers to the alternat-
ing combination of S1 and S2 methods in which iterations are di-
vided between S1 and S2 in the same way as in our algorithm.
We use ARAP distortion D̃ARAP in Fig. 16 and D̃iso distortion in
other ABCD trials, where Diso = σ

2
1 +σ

−2
1 + · · ·+σ

2
m +σ

−2
m and

DARAP = (σ1−1)2 + · · ·+(σm−1)2.

First, we compare LGB strategy with the block partitioning
scheme in which the partitioning threshold is constant, K = ∞.
We conclude that ABCD with LGB is more robust, but it has a
higher computation cost at the beginning of the optimization. The
impact on the algorithm speed is not significant on meshes with a
few dozens of thousands of simplices or less. However, in higher
resolution, we recommend either to increase the value of Lmin or
to use ABCD without LGB.

Next, we compare ABCD with LBD+AKVF in Fig. 5, to show
that our strategies support each other, and, when combined to-
gether, attain the most significant progress. These and other related
experiments with shape deformations and constrained parametriza-
tion indicate that ABCD is more likely to avoid poor local minima,
where positively oriented maps are non-locally injective (see Fig.
5 top-right). Although we can not guarantee avoiding cases of poor
local minima, our method is very general and it can be further mod-
ified for inducing globally injective mapping. This subject is briefly
discussed in Appendix C and our experiment with scaffold meshes
is depicted in Fig. 9 (right).

Methods from Fig. 5 perform similarly over a wide range of un-
constrained and constrained problems in 2D and 3D. Furthermore,
as shown in Fig. 11, we have tested ABCD on 600 models with
randomly generated initializations and encountered only few fail-
ures, while competing methods (LBD, SA) appear to fail constantly
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Figure 13: We compare PN parametrization, initialized by Tutte embedding, and ABCD(PN) parametrization, initialized by mapping sur-
faces into UV-map of a decimated mesh. Specifically, we parametrize a mesh with 2K triangles and use the deformation embedding method
[NZ19] for initializing the problem in a higher resolution (see Fig. 25 in supplemental). We run 12 iterations for each mesh resolution and
depict D̃iso as a function of the runtime. In these examples, we used Eigen library for linear algebra.

Problem in 2D #triangles #invalid #vertices /
#anchors

Gecko 1238 5 804 / 45 0.04 0.121 3 7 0.17 0.25 13 22
Elephant 1796 412 1105 / 788 0.203 0.173 11 9 0.32 0.35 18 28
Octopus UV 5986 18 3924 / 8 0.469 0.313 13 9 0.91 0.89 20 27
Grid 100x100 20000 4149 10201/ 0 1.105 1.571 9 7 2.38 3.11 15 20
Octopus UV 23944 18 13833 / 8 2.022 4.757 15 49 2.58 5.82 17 57
Elephant 28736 14038 15193 / 1648 2.178 5.819 12 38 4.33 7.10 21 47
Octopus UV 95776 19 51609 / 8 9.414 13.779 20 45 14.82 17.80 27 55
Gorilla UV 100000 7 50379 / 0 0.463 0.473 3 3 2.89 3.10 6 8
Elephant 114944 54900 59121 / 3296 7.403 7.023 12 14 14.06 13.08 20 28
Gorilla UV 839092 20 420408/ 0 5.736 5.828 3 3 34.85 37.41 7 10

timing to fix iterations
to fix

timing total iterations
total

Problem in 3D #tets #invalid #vertices /
#anchors

timing to
fix

iterations
to fix

timing
total

iterations
total

Twisted bar 12000 6961 2541/0 1.65 8 3.18 14
Bar bending into spiral 30000 104 6171 / 0 0.9 6 3.36 10
Bar bending into spiral 30000 104 6171/ 2 0.91 6 4.41 12
Bar bending into spiral 30000 104 6171 / 242 1.03 7 9.52 21
Twisted wrench 50122 120 14798 /7942 2.16 9 5.52 13
Bended wrench 50122 322 14798 /4792 18.2 49 23.7 53
Bended wrench (ARAP) 50122 322 14798 / 4792 7.04 20 11.8 25
Armadillo 56917 405 15791/ 662 12.4 24 20.1 29
Armadillo (ARAP) 56917 405 15791/ 662 7.27 18 14.6 23
Dinosaur 58191 141 16115/680 22.4 58 28.4 60

(no LGB) (LGB) (LGB)(no LGB)

Figure 14: Reporting numbers of iterations and seconds until all invalid elements are fixed, and until the final convergence (24) of ABCD(PN)
with ε1 = 10−3 and ε2 = 10−2. In 2D, we report both the results of ABCD without LGB and of ABCD with LGB for Lmin = 0.1Lmax. We
used Pardiso linear solver to optimize D̃iso (default) and D̃ARAP distortions. All experiments were timed on the four-core i7-8565U CPU.

on every trial. These tests show that ABCD is well-scalable and
can recover from extremely distorted meshes of a high resolution.
We compared ABCD(PN) for shape deformation problems with
other related methods. As demonstrated in Figs. 9 (left), 15 and
16, ABCD is both faster and more reliable than other techniques
for computing positively-oriented simplicial maps. Also, our ex-
periments with different core-solvers show that ABCD(PN) is more
robust than ABCD(S) for any tested first order solver S.

We examine failure cases of LBD and SA fixers in both 2D (Figs.
17, 9) and 3D (Figs. 18, 16), and find that these methods can, in
general, handle only maps with relatively small fractions of in-
verted and collapsed simplices. These conclusions are exemplified
for highly distorted initializations of the volumetric bar and planar
model in Figs. 18 and 17. Moreover, as illustrated in Fig. 1, adding
positional constraints reduces significantly LBD capabilities. Note
that our experiments reveal that running LBD and state-of-the-art
optimizers in the alternating manner is more effective than using
standalone LBD or combining these methods into a single cascade.

We tested our algorithm for computing isometric parametriza-
tions with fixed anchors and initial mappings to non-convex do-
mains. Some of these scenarios are presented in Figs. 7 and 17. To
construct the starting point, we, first, compute the standard Tutte
embedding, and then move anchors to their prescribed positions.

We experiment with alternative initialization schemes for sur-
face parametrization. In Figs. 13 and 17 (second row), we start

with Tutte mapping onto the non-convex region obtained by pa-
rameterizing a decimated mesh. That is, we initialize a problem by
mapping a rest surface into the image of its UV-map, computed in
a lower resolution (Section 12 in supplemental). As demonstrated
by Fig. 13, this initialization scheme can accelerate UV-map com-
putations for meshes of a high resolution.

In Figs. 12 and 26 (supplemental), we compare the BFF confor-
mal initialization scheme with the standard isometric parametriza-
tion. Specifically, we ran BFF conformal parametrization on 600
meshed from the dataset of [LYNF18] and collected 190 maps with
invalid triangles. These maps were used to initialize ABCD(PN). In
this experiment, we have only one mesh where ABCD(PN) failed
to repair invalid elements in BFF, while Tutte embedding produced
flipped or collapsed triangles in 20% of the trials. We tested the
remaining meshes with valid Tutte maps and found that in 84% of
the trials our method ran faster than the standard parametrization,
initialized by Tutte embedding.

As observed in our experiment, Tutte embedding has certain
implementation-related limitations and, for challenging meshes, it
can fail even if the target domain is convex. In particular, as demon-
strated in [SJZP19], Tutte embedding may produce invalid trian-
gles due to precision loss in the floating point arithmetic. We tested
ABCD(PN) and PE on a challenging Tutte failure example, intro-
duced in [SJZP19]. As demonstrated in Fig. 15, ABCD ran faster
and converged to a mapping with lower isometric distortion.
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Figure 15: Mapping of the Hele-Shaw polygon [SJZP19] (top)
onto the square (bottom) using ABCD(PN) (left) and the PE method
(right). The initial Tutte embedding produces 41 flipped and 845
degenerate triangles. It takes 25 seconds to fix all invalid triangles
by ABCD(PN), while PE runs 60 seconds. Histograms show final
isometric distortions of triangles in a logarithmic scale.

According to our proposition in Appendix A, we presume that
even for valid initializations, our vertex partitioning strategy can
improve a core-solver performance, provided that positional con-
straints disconnect the mesh. See an example of such scenario at
the bottom of Fig. 6.

To summarize, we have demonstrated over a variety of geomet-
ric problems that ABCD exhibits superior performance compared
to existing methods in terms of its speed, robustness to inverted
and highly distorted simplices, and it can deal with more complex
positional constraints. In particular, our algorithm can start with
the proposed conformal initialization scheme to speed up isometric
parametrization for challenging meshes.

9. Conclusion and Future Work

Until recently, a lack of locally-injective initialization was one of
the major concerns for running geometric optimization. Our al-
gorithm resolves this issue for a wide range of scenarios. In this,
ABCD broadens the frontiers of tractable geometric processing
problems and we believe that it can contribute a lot to modern de-
sign tools.

We suggest to further explore conformal flattening and Tutte
mapping onto non-convex regions as an alternative starting point
for accelerating parametrizations. We believe that these methods
can be integrated with the recently-proposed acceleration tech-
niques [LYNF18; PDZ*18] to attain even faster performance. Our
algorithm is built upon a number of heuristics that work well em-
pirically. However, we cannot prove that there is a guaranty to re-
pair all invalid elements and reach the optimality. A supplementary

InitializationRest mesh
LBD  

ABCD ARAPABCD isom.
�lip-free

nu
m

be
r 

 o
f  
�li

ps

seconds

Figure 16: ABCD(PN) with D̃iso and D̃ARAP distortions versus
LBD on tetrahedral meshes. We bound condition number in LBD by
σ1/σ3 < 102. Left to right: Rest mesh, initialization with anchor
points, marked in blue, and numbers of flipped tets per second.

mathematical analysis is required to better understand our empiri-
cal results and consider conditions for optimality.

Although a naive GD map fixer works well in our experiments, a
more sophisticated approach can potentially yield even better re-
sults. For example, gradient preconditioning of many first-order
solvers provides a better descent direction than a naive GD because
preconditioning methods take into account the intrinsic metric of
the deformation space. Unfortunately, at the moment it is not clear
what is the right preconditioner for map fixer optimization steps.
Considering a metric approach oriented at minimizing this class of
geometric measures and finding the right preconditioner may be a
promising direction for future research.

Acknowledgments. We thank Gregory Naitzat for proof-reading
and giving valuable comments, and the anonymous reviewers for
their constructive feedback. This research has been supported in
part by the Ollendorff Minerva Center.

Appendix A. Proof of BCD Superiority

Proposition. Let S be a global core-solver, initialized by xxx0. De-
note by xxx and x̄xx results of running a single iterations of S and of
ABCD(S) with K ≥ Lmax, respectively. If the exact line search is
used in (5) to minimize energy E, then E(x̄xx)≤ E (xxx).

Proof. Suppose w.l.o.g. that there are two free blocks B1, B2 in
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Figure 17: ABCD with first order core-solvers versus other related methods in 2D. Each element in the table shows the final result of the
corresponding method and invalid triangle numbers per iteration. We plot Symmetric Dirichlet energy in logarithmic scale for each problem
(bottom), where solid curves and dashed lines denote optimizer and fixer iterations, respectively (LBD is considered as a fixer). Note that SA
results before the last iteration are our estimates, derived from the final output of SA.

ABCD and denote the remaining static vertices by B0 = V\(B1 ∪
B2). Then, there are no mesh edges {u,v} for u∈ B1 and v∈ B2 be-
cause, by our assumption on block partitioning, B1 is disconnected
from B2 with respect to ‘∼’ relation. As a result, we can represent
E as a sum of energies, defined over disjoint simplices:

E = EB0 +EB1 +EB2 ; EBi = ∑
c∈C(Bi)

w(c)D(d fc) ,

where C(Bi), i = 1,2, are simplices that share at least one vertex
from Bi and C(B0) are the rest of the elements. Denote by ddd and
d̄dd the descent directions attained in S and ABCD(S), respectively.
Define E[zzz] = E

(
xxx0 + zzz

)
, then the resulting energy in ABCD(S) is

E(x̄xx) = min
∆t1

EB1

[
∆t1d̄ddB1

]
+min

∆t2
EB2

[
∆t2d̄ddB2

]
+ EB0︸︷︷︸

const.

, (25)

while running a single iteration of S yields

E(xxx) = min
∆t

(EB1 [∆tdddB1 ]+EB2 [∆tdddB2 ]+EB0 ) . (26)

If d̄ddBi = dddBi for i= 1,2, then the proposition’s inequality (25)≤(26)
is proven because ‘min’ is sub-additive and EB0 is constant by the
definition (only free vertices are updated in S and ABCD(S)).

Note that H in (7) satisfies the following: (i) Huv 6= 0 only if
u and v share a common simplex c; (ii) Huv depends only on xxxp,
where p are neighbors of c’s vertices; (iii) Huv = 0 for any u ∈ B1
and v ∈ B2, since there are no edges between B1 and B2. Properties
(i)-(iii) imply that, by reordering vertices, (7) can be rewritten as HB0 ∗ ∗

∗ HB1 0
∗ 0 HB2

 0
dddB1

dddB2

=−

∇EB0

∇EB1

∇EB2

 , (27)
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Figure 18: ABCD versus alternating combination of LBD and BCQN on tet meshes. We show number of invalid tets and energy values per
iteration. We plot energy E j in solid lines for iterations in which E j is minimized and in other iterations E j is shown in dashed lines.

where each HBi is a block of H, computed for vertices in Bi. Then,
we conclude by (27) that d̄ddBi = dddBi for i = 1, 2. For N free blocks,
B1, . . . ,BN , we repeat the proof with B0 =V\(B1∪B2...∪BN) and
show that d̄ddBi = dddBi for i≥ 1.

Appendix B. Blending Procedure

Denote odd (global) and even (local) iterations by g(i) = 2i− 1
and l(i) = 2i for i≥ 1, respectively. We estimates the performance
ratios of k global-local iterations by

Ri =
1

min{k, i}(1+µ)

i

∑
s=di−k+1e

∆Eg(s)

∆E l(s)
+µ

Dispg(s)

Displ(s)
, (28)

where d•e=max{•,1}, µ> 0 is a constant blending parameter and
the denominator value is chosen for obtaining Ri = 1 for equally
performed global-local iterations. We compute (28) and adjust par-
titioning thresholds for the next cycle via(

K2i+1, K2i+2) = Blend
(
K2i−1, K2i,Ri, Lmax

)
, (29)

where “Blend” is the procedure described in Algorithm 2.

Appendix C. Map Injectivity

Although orientation preserving maps are not always one-to-one,
there is the following simple condition for guaranteeing the global
bijectivity [AL13]: a positively oriented simplicial map f : M→Ω

is a global bijection if f maps bijectively ∂M onto ∂Ω. As a result,
ABCD produces a globally injective map upon its successful run
if the optimized boundary is non self-intersecting. We have exper-
imented with techniques [JSP17; SS15] to avoid self-intersections
between boundary edges. These methods meet the necessary condi-
tions, listed in Section 7.2, and thus can be integrated with ABCD.

In a toy model example, demonstrated in Fig. 9 (right), we attain
a globally injective map by constructing a scaffold mesh [JSP17]
and by running Algorithm 3 with the line search step modified to
prevent boundary self-intersections [NSZ18].
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Supplementary Document

In this document we provide some additional results and discuss
ABCD limitations and certain technical details related to an opti-
mal usage of our algorithm. We adopt abbreviations and notations
introduced in the paper. In particular,D j denotes a SVD-based dis-
tortion measures; its energy (1) is denoted by E j and S j refers to a
core-solver chosen to optimize E j in ABCD.

10. Additional Results

We provide the following additional results:

• Fig. 26 presents results of conformal initialization scheme for
all 190 meshes collected from the Progressive Parametrization
dataset. These results are summarized in Fig. 12.
• In Fig. 24, we tested how hyper-parameters affect ABCD algo-

rithm. Each trial, tested in Fig. 24, had a different set of hyper-
parameters that control the following processes: division be-
tween global and block iterations, line search, LGB and eval-
uation of the measure F . These parameters are listed in Table
1. Note that fixer and optimizer stages have different hyper-
parameters.
• In Fig. 19, we experimented with as killing as possible con-

strained parametrization. In this figure, we tested how ABCD
behaves under positional constraints that enforce negative orien-
tation of target simplices.
• In Fig. 21, we used ABCD(PN) to fix failures in Tutte embed-

ding and parametrize space fitting curves with different initial-
ization schemes. We compared the two initialization methods:
Tutte embedding and the BFF mapping [SC18]. According to
our results, the proposed BFF initialization scheme outperforms
significantly the standard approach with Tutte embedding. Start-
ing with BFF, conformal embedding produces no flips in these
experiments, whereas Tutte embedding produces a small number
of foldovers due to the presence of extremely distorted triangles.
Furthermore, conformal initializations are very close to the final
isometric parametrization.
• Fig. 23 compares iterations of ABCD(BCQN) and ABCD(PN)

methods that we used in our randomized experiments (Fig. 11).

Tutte

27 flips 
15 anchors 

Initialization

18 flips 
10 anchors 

4  flips 

Final

0  flips 

Figure 19: Running a stress test of ABCD(PN) to identify po-
sitional constraints inconsistent with a positively oriented UV-
map. To find failure cases in the algorithm, we deform Tutte map-
ping and fix positions of distorted vertices. Top: Positively-oriented
Tutte mapping into a disc; Middle: We flip positions of 10 succes-
sive boundary anchors. Bottom: We flip positions of 15 successive
boundary anchors.

11. Failures and Challenging Cases

Because we use hard positional constraints, our algorithm cannot
repair inversions if given positional constraints, Axxx = zzz, contradict
the orientation requirement, ∀c ∈ C : detd fc > 0.

Obviously, if A ⊂ V is a set of anchors, then the restriction of
an initial map to A has to be an orientation-preserving map. In Fig.
19, we use this property of initial maps to test how many incon-
sistently placed anchors can be handled by our algorithm. We start
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Figure 20: Here we solve the third problem from Fig. 18 by mini-
mizing three distortions: F(σ,0), D̃iso and F(σ,10). These distor-
tions are optimized according to Algorithm 4 with n j = 2 and the
results are visualized in the same way as in Fig. 18.

with a positively oriented initialization and add gradually anchors
to revert counter clockwise orientation of the boundary. Our algo-
rithm succeeds to repair inversion for almost a half of inconsistently
placed boundary vertices (Fig. 19 middle) and it fails when more
than half of the boundary is reverted to the clockwise orientation.
Note that, in the unconstrained version of the problem, ABCD(PN)
repairs all the inversions without any difficulty.

To resolve failures induced by inconsistent anchor positions, one
should use soft positional constraints, instead of hard ones. That is,
one should replace (4) with a cost function that penalizes anchor
deviations from their prescribed positions. However, the subject on
soft constraints is beyond the scope of this work because we have
restricted objective functions in (2) to be SVD-based energies.

In some challenging cases, ABCD may struggle to repair inver-
sions due to the presence of extreme differences in sizes of target
elements. In particular, running BFF on some meshes from Fig. 26
produces conformal mapping with many “poles” — areas where
target elements around inversions are shrunken to extremely small
areas. It is difficult to set a proper singularity threshold ε in (13)
that works well on these meshes. Setting ε too low may lead to
numerical issues in the optimizer stage, setting it too hight may
false-positively identify some proper triangles as invalid elements.
Nevertheless, we succeeded to resolve these scenarios from Fig. 26,
but it took significantly more time for our algorithm to converge.
Not that most of these meshes cannot be processed by standard
methods because, in these cases, Tutte map tends to produce sim-
ilar poles with inverted triangles. See Section 8 for our discussion
on Tutte embedding and precision lost issues.

Algorithm 4 ABCD with LGB for q measures
Input:
• Source mesh (V, C) and vertex initialization xxx0.
• Distortions

{
D j
}q

j=1 and their gradients
{
∇D j

}q
j=1.

• Core solvers
{

S j
}q

j=1 with iteration numbers
{

n j
}q

j=1.

1: i←[ 0.
2: for j = 1, . . . ,q do
3: G j← [ 1, L j← [ 0, b j← [ 1, state( j)← [ ‘global’.
4: end for

5: repeat
6: for j = 1, . . . ,q do {n j times each}
7: E j←[D j energy of f [xxxi] according to (1).
8: if average(E j)≤minD j continue.
9: if state( j) =‘local’ then

10: K← [ L j.
11: else
12: K← [ G j.
13: end if
14: ddd← [ descent direction of E j attained by S j.
15: {xxxi

B}B∈B←[ BlockPartition(K, ddd) via Algorithm 1.
16: for B ∈ B in parallel do
17: xxxi+1

B ←[ solution of (2) in B using S j with b j max itera-
tions.

18: end for
19: if state( j) =‘local’ then
20: (G j, L j)←[ Blend(G j, L j) via Algorithm 2.
21: Update b j.
22: end if
23: Switch state( j) between ‘local’ and ‘global’.
24: end for
25: i←[ i+1.
26: until (24) is true for each E j or i = imax.

We found that if the parameter Λ in (13) is slightly increased,
then it takes less ABCD iterations to process meshes with poles.

12. Initialization with Decimated UV-Map

We provide some explanations on the embedding deformation
method [NZ19]. We used this method in Fig. 13 to construct a bet-
ter starting point for surface parametrization.

Assume that Y is a decimated mesh of a mesh X , yyy0 is the Tutte
embedding of Y and yyy is a parametrization of Y , computed by ini-
tializing isometric optimization with yyy0. The embedding deforma-
tion method is a simple approach aimed at mapping X onto the
region contained in ∂yyy with only a small number of foldovers. As-
sume that xxx0 is Tutte embedding of X to a disc (1− ε)D. Then, the
embedding deformation method includes the following steps:

1. Construct the simplicial mapping g : yyy0 7→ yyy.
2. For each vertex v of X , find simplex s(v) of Y such that xxx0

v is
contained in the initial mapping of s(v), i.e., xxx0

v is located in the
triangle with coordinates yyy0

u, u ∈ s(v).
3. Map each vertex v of X to xxxv = gs(v)

(
xxx0

v
)
.
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The above steps are illustrated by Fig. 25. Note that we scale
slightly xxx0 by a factor of (1− ε) to avoid encountering numerical
issues on the mesh boundary.

13. GD for Map Fixer Measures

To justify our definitions in (14), assume, first, that we have only a
single simplex c and observe how updating xxx via GD for distortion
D affects d fc. We can represent d fc as a linear function of singular
values σ, acting on its right singular vectors:

d fc[σ] : vvv j 7→ σ juuu j , (30)

where uuu j and vvv j are columns of U and V matrices that appear in the
signed SVD of d fc, d fc =Udiag(σ1,...,σm)V>. Since GD modifies
d fc non-rigidly, its rotation components U and V are unchanged.
Thus, the GD update step has a particularly simple form with re-
spect to (30)

σ(t +∆t) = σ(t)−∆t∇σD . (31)

Choose D = Dcollapse, then −∇Dcollapse is a decent direction of
Dcollapse and σ(t + ε) is its nearest minimum obtained in (31). If a
number of simplices c1, . . . ,cN share a common vertex v, then the
contribution of each gradient ∇Dcollapsed (σ(d fc)) is summed up
to form the energy gradient at v. Hence, repairing collapsed sim-
plices with Dcollapse reduces unnecessary deformation of valid ele-
ments, since (31) modifies d fc only on degenerate simplices along
their collapsed axes. Similarly, only vertices of inverted elements
are modified in GD optimization of Dflip.

14. Algorithm Generalization

In general, our algorithm can optimize an arbitrary list of distortion
measures. In particular, ABCD can function well with more than
two measures, {D j}q

j=1, if these measures do not contradict each
other and there is at least one map fixer and at least one optimizer
distortion (10). In this case, we can use Algorithm 4 that presents
ABCD generalization for q measures. This algorithm uses the no-
tion of the local and global iterations and other related notations,
introduced in Appendix B.

Fig. 20 illustrates an example of running Algorithm 4 with three
distortion measures.

15. Configurations for Local-Global Blending

If LGB is enabled in Algortihm 3, then we advise to set an even
number of successive iterations n j for each energy E j to prevent
the global-local cycle of one energy from being interrupted by it-
erations of another one. These interruptions adversely affect the
local-global blending because the mutual impact of different mea-
sures can be mixed up in (28), leading to incorrect performance
estimates.

We also suggest to start with the “global-local” order in LGB.
That is, we suggest to set K1 = Lmax and K2 = Lmin in the first
call to Algorithm 2. This order of partitioning thresholds leads to
better results because at the beginning global optimization tends to
deform the entire shape of a target mesh, while local optimization
are more concentrated on improving shapes of individual simplices.

Conformal Tutte

#triangles

BFF Tutte BFF Tutte BFF Tutte BFF Tutte BFF Tutte BFF Tutte

32228 0 1 0.498 0.094 0 0.926 0 8 0.805 1.915 11 23

51898 0 10 0.749 0.133 0 0.727 0 3 1.473 7.582 11 54

128912 0 32 1.983 0.384 0 25.31 0 41 3.233 35.87 11 84

515648 0 62 7.37 1.594 0 230.4 0 151 13.5 241.8 11 164

iterations
total

timing totaliterations to
fix

timing to fix#invalids initialization
time

Figure 21: Unconstrained parametrization of Hilbert curve of
different resolutions. We use ABCD(PN) to fix inversions in Tutte
maps and compare parametrization, initialized by Tutte, with the
parametrization initialized by BFF [SC18] conformal mapping. We
run these tests with Pardiso library on four-core i7 CPU and report
runtimes in seconds.

As a result, the progress of BCD step at the first iteration is often
lost at the next step if we start with K1 =Lmin, K2 =Lmax instead.

16. Quasi-Newton Solvers

For an optimal integration with ABCD algorithm, the parameters
for a quasi-newton solver need to be saved when it completes its
iterations in the current cycle, and reloaded when we resume its
iterations in the next cycle. In this way, one can achieve a better
continuity in optimization process between different cycles, which
experimentally yields faster convergence. For instance, if S j is the
L-BFGS solver, then the values of xxxi

B and ∇E i
B should be stored

over a number of successive iterations. This data should be restored
when S j resumes its operation, since to write a secant equation one
would like to consider the current gradient, and gradients from pre-
vious run of the preceding optimization cycle of S j, rather than use
gradients from iterations of a different measure.

17. Note on Enhanced Line Search

We added the following simple modification to the Armijo back
tracking line search: we store coordinates xxx′B(t) that induced the
highest decrease in block energy (21) during the line search. If
the Armijo-Goldstein condition is not satisfied within the maximal
number of the line search iterations, then block coordinates for the
next iteration are set to xxx′B(t).

This enchantment is aimed at improving map fixer performance
by making it less sensitive to line search parameters. In particular,
in some configurations, map fixer can repair inversions but, at the
same time, it may struggle to attain a sufficient decrease in F to
satisfy the Armijo rule. In these scenarios, our method improves
the fixer performance.

Note that core-solver S can modify a solution of the descent
equation (7) to get more progress in the line search. We consider
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optimizer
fixer

ABCD(akvf)
ABCD(bcqn)
BCQN+LBD

Figure 22: Comparing ABCD(BCQN), ABCD(AKVF) and LBD+BCQN from Fig. 18. Here we plot number of inverted tetrahedrons and
isometric energy per iteration in the same way as in Fig. 17.

Table 1: ABCD parameters are specified for each trial, tested in
Fig. 24. We use the following notations: b′j refers to the maximal
number of block iterations; ‘Search’ refers to the line search filter-
ing range, described in Section 7.3; L′min = Lmin /Lmax and L′min
= ‘· · · ’ denotes trials in which LGB is disabled.

Fixer parameters Optimizer parameters

Trial
Iterations Search LGB Measure Iterations Search LGB
n j b′j 1− δ

− L′min Λ n j b′j 1− δ
+ L′min

1 4 4 1.1 · · · 0 4 1 0.5 · · ·
2 2 1 1.1 · · · 0 1 1 0.5 · · ·
3 1 1 1.1 · · · 0 1 1 0.5 · · ·
4 4 10 1.1 · · · 0 4 1 0.5 · · ·
5 2 10 1.1 · · · 0 2 1 0.5 · · ·
6 1 10 1.1 · · · 0 1 1 0.5 · · ·
7 4 10 1.1 · · · 0 4 4 0.5 · · ·
8 2 10 1.1 · · · 0 1 4 0.5 · · ·
9 1 10 1.1 · · · 0 1 4 0.5 · · ·
10 4 10 1.5 · · · 0 4 4 0.5 · · ·
11 4 10 2.5 · · · 0 4 4 0.5 · · ·
12 2 10 10 · · · 0 2 4 0.5 · · ·
13 4 4 1.1 0.05 0 2 2 0.5 0.05
14 4 4 1.1 0.1 0 2 2 0.5 0.1
15 4 10 1.1 0.2 0 2 2 0.5 0.2
16 4 4 1.1 0.01 0 2 2 0.5 · · ·
17 4 4 1.1 0.1 0 2 2 0.5 · · ·
18 4 4 1.1 0.2 0 2 2 0.5 · · ·
19 4 4 1.1 · · · 0.001 2 2 0.5 · · ·
20 4 4 1.1 · · · 0.1 2 2 0.5
21 4 4 1.1 · · · 1 2 2 0.5 · · ·

these modifications as the part of the descent direction computa-
tion, employed in ABCD(S) algorithm. For example, the barrier-
aware filter on search directions [ZBK18] is the part of BCQN
solver, and therefore it is also employed in ABCD(BCQN).

18. Weighted Simplex Displacement Norm

We found that using the coordinates of simplex centers in (19), in-
stead of vertices, yields better scalability, since ∆xxxi is more likely to
accumulate numerical errors. We define a simplex-based displace-
ment norm as follows:

Dispi
C =

1
ē

∥∥diag(www)
(
∆Ci−Proj

Ker
(

Ci−1
)(∆C i))∥∥

Fro , (32)

ABCD(PN)

ABCD(BCQN)
115K

2K
30K

100K

6K
24K

ABCD(PN)

ABCD(BCQN)

Figure 23: Showing an average number of invalid triangles per
iteration, obtained in the experiments from Fig. 11. Vertical bars
show the standard deviation.

where www is the stack of weights w(c) from (1), Ci ∈ R|C |×m are
simplex target centers in ith iteration, ∆Ci = Ci−Ci−1 and ē is an
approximate average length of edges in the target domain.
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trial 1 trial 2 trial 3 trial 1 trial 2 trial 3 trial 1 trial 2 trial 3 trial 1 trial 2 trial 3

Gecko 1238 5 45 9 11 13 0.106 0.162 0.193 37 39 38 0.193 0.28 0.313
Elephant 1796 784 788 11 17 15 0.138 0.263 0.23 38 43 39 0.237 0.41 0.355
Octopus 5986 17 8 12 38 59 0.293 0.933 1.67 39 66 65 0.6 1.38 1.777

Grid 20000 4149 0 9 12 13 0.612 0.874 1.021 36 43 43 1.759 2.67 2.717
Octopus 23944 17 8 28 336 78 1.769 22.034 6.522 55 336 89 3.041 22.11 7.254
Elephant 28736 14038 1648 43 52 23 3.253 4.994 2.654 69 76 54 4.692 6.77 4.867
Octopus 95776 19 8 41 160 132 11.401 34.335 34.596 74 170 139 18.491 36.44 36.129
Gorilla 100000 7 0 3 5 3 0.465 1.573 1.299 12 13 12 3.209 3.33 3.209

Elephant 114944 54900 3296 18 28 29 6.69 8.961 10.376 52 55 55 14.344 15.12 16.183
Gorilla 839092 20 0 3 4 3 4.98 13.701 13.616 16 16 15 34.459 37.57 35.113

trial 4 trial 5 trial 6 trial 4 trial 5 trial 6 trial 4 trial 5 trial 6 trial 4 trial 5 trial 6

Gecko 1238 5 45 9 6 7 0.145 0.109 0.121 37 35 41 0.279 0.25 0.289
Elephant 1796 784 788 11 10 11 0.173 0.16 0.175 38 38 37 0.313 0.32 0.373
Octopus 5986 17 8 10 18 24 0.306 0.531 0.671 38 42 54 0.762 0.92 1.168

Grid 20000 4149 0 9 7 7 0.726 0.672 0.61 36 40 39 2.296 2.54 2.435
Octopus 23944 17 8 17 15 23 1.429 1.513 2.417 51 43 61 3.544 3.25 4.787
Elephant 28736 14038 1648 78 31 15 7.241 3.523 1.977 104 59 50 9.099 5.55 4.494
Octopus 95776 19 8 22 61 27 6.231 17.361 8.191 60 87 65 14.784 22.90 16.62
Gorilla 100000 7 0 3 5 3 0.472 1.638 1.317 12 13 12 3.028 3.59 3.272

Elephant 114944 54900 3296 25 15 13 8.865 6.22 4.881 51 45 43 14.82 12.88 11.509
Gorilla 839092 20 0 3 3 3 5.339 13.839 13.861 16 15 15 35.328 35.42 35.43

trial 7 trial 8 trial 9 trial 7 trial 8 trial 9 trial 7 trial 8 trial 9 trial 7 trial 8 trial 9

Gecko 1238 5 45 8 5 5 0.131 0.076 0.086 13 13 12 0.206 0.18 0.191
Elephant 1796 784 788 9 9 9 0.175 0.152 0.164 16 14 19 0.292 0.24 0.318
Octopus 5986 17 8 12 13 13 0.43 0.435 0.538 19 21 17 0.862 0.93 0.804

Grid 20000 4149 0 8 7 7 0.987 0.678 0.763 13 15 14 2.075 2.27 2.176
Octopus 23944 17 8 11 10 19 1.184 1.028 2.792 20 18 24 3.078 2.75 4.013
Elephant 28736 14038 1648 31 18 10 5.486 2.947 1.946 33 23 16 6.109 4.28 3.478
Octopus 95776 19 8 19 36 26 9.054 15.656 14.793 24 43 30 12.976 20.89 18.14
Gorilla 100000 7 0 3 4 3 0.478 1.336 1.363 6 6 6 2.788 2.90 3.763

Elephant 114944 54900 3296 11 11 9 5.596 5.584 5.264 19 18 15 12.321 11.45 10.481
Gorilla 839092 20 0 3 3 3 5.433 12.58 14.531 7 6 6 34.776 35.36 36.443

iterations total timing total
Problem #triangles #invalids #anchors

iterations to fix timing to fix

iterations total timing total

Problem #triangles #invalids #anchors
iterations to fix timing to fix iterations total timing total

Problem #triangles #invalids #anchors
iterations to fix timing to fix

trial 10 trial 11 trial 12 trial 10 trial 11 trial 12 trial 10 trial 11 trial 12 trial 10 trial 11 trial 12

Gecko 1238 5 45 4 3 2 0.067 0.04 0.039 13 13 11 0.177 0.17 0.145
Elephant 1796 784 788 11 11 10 0.2 0.203 0.18 16 18 16 0.291 0.32 0.271
Octopus 5986 17 8 14 13 13 0.615 0.469 0.535 18 20 18 0.883 0.91 0.879

Grid 20000 4149 0 9 9 8 1.083 1.105 1.112 15 15 13 2.356 2.38 2.203
Octopus 23944 17 8 24 15 18 3.447 2.022 2.513 24 17 22 3.648 2.58 3.461
Elephant 28736 14038 1648 12 12 13 2.204 2.178 3.017 20 21 20 4.193 4.33 4.782
Octopus 95776 19 8 25 20 25 13.346 9.414 13.26 30 27 28 17.251 14.82 15.973
Gorilla 100000 7 0 3 3 6 0.47 0.463 2.284 6 6 9 2.832 2.89 5.081

Elephant 114944 54900 3296 12 12 11 6.111 7.403 7.713 20 20 17 12.726 14.06 12.964
Gorilla 839092 20 0 3 3 5 5.684 5.736 22.346 7 7 10 34.824 34.85 64.176

Problem #triangles #invalids #anchors
iterations to fix timing to fix iterations total timing total

trial 13 trial 14 trial 15 trial 13 trial 14 trial 15 trial 13 trial 14 trial 15 trial 13 trial 14 trial 15

Gecko 1238 5 45 7 7 7 0.133 0.121 0.116 22 22 22 0.259 0.25 0.242
Elephant 1796 784 788 10 9 9 0.204 0.173 0.162 25 28 19 0.343 0.35 0.259
Octopus 5986 17 8 8 9 8 0.357 0.313 0.228 26 27 24 0.938 0.89 0.726

Grid 20000 4149 0 7 7 7 3.748 1.571 0.764 21 20 21 5.399 3.11 2.418
Octopus 23944 17 8 8 49 37 1.022 4.757 3.709 23 57 51 2.925 5.82 5.44
Elephant 28736 14038 1648 37 38 43 7.407 5.819 6.074 42 47 54 8.177 7.10 7.613
Octopus 95776 19 8 26 45 52 8.8 13.779 14.924 42 55 63 15.476 17.80 19.018
Gorilla 100000 7 0 4 3 3 1.276 0.473 0.478 9 8 8 3.286 3.10 3.063

Elephant 114944 54900 3296 14 14 19 10.326 7.023 8.489 28 28 32 16.365 13.08 14.091
Gorilla 839092 20 0 3 3 3 5.835 5.828 5.773 10 10 10 37.57 37.41 37.701

trial 16 trial 17 trial 18 trial 16 trial 17 trial 18 trial 16 trial 17 trial 18 trial 16 trial 17 trial 18

Gecko 1238 5 45 7 7 7 0.103 0.095 0.092 21 21 21 0.221 0.22 0.196
Elephant 1796 784 788 13 9 10 0.303 0.147 0.148 26 23 22 0.415 0.29 0.262
Octopus 5986 17 8 9 12 8 0.257 0.37 0.228 24 28 23 0.73 0.89 0.705

Grid 20000 4149 0 7 7 7 0.606 0.642 0.633 21 21 21 2.258 2.29 2.288
Octopus 23944 17 8 11 16 38 1.103 1.439 3.362 25 31 43 2.847 3.27 4.066
Elephant 28736 14038 1648 38 41 105 4.898 4.696 11.963 44 46 112 5.809 5.44 13.028
Octopus 95776 19 8 16 43 19 4.762 11.912 5.765 33 58 33 11.944 17.71 11.42
Gorilla 100000 7 0 2 3 3 0.341 0.49 0.509 7 8 8 3.062 3.19 3.268

Elephant 114944 54900 3296 14 14 14 7.258 6.962 6.932 28 28 28 13.232 12.90 12.961
Gorilla 839092 20 0 3 3 3 6.566 6.36 6.419 10 10 10 38.684 38.46 38.388

trial 19 trial 20 trial 21 trial 19 trial 20 trial 21 trial 19 trial 20 trial 21 trial 19 trial 20 trial 21

Gecko 1238 5 45 7 7 7 0.105 0.092 0.101 21 21 21 0.233 0.201 0.222
Elephant 1796 784 788 10 9 8 0.152 0.143 0.122 22 20 20 0.255 0.254 0.228
Octopus 5986 17 8 217 29 25 6.217 0.843 0.752 217 41 36 6.254 1.241 1.126

Grid 20000 4149 0 7 7 7 0.676 0.654 0.746 21 21 22 2.394 2.325 2.55
Octopus 23944 17 8 16 37 66 1.429 3.61 7.845 30 48 80 3.222 5.026 9.615
Elephant 28736 14038 1648 55 198 66 6.04 33.647 5.954 56 201 80 6.314 34.186 10.77
Octopus 95776 19 8 18 134 … 5.819 53.208 … 39 139 .. 14.976 55.311 …
Gorilla 100000 7 0 3 3 3 0.522 0.51 0.58 8 8 8 3.231 3.213 3.349

Elephant 114944 54900 3296 13 16 61 6.876 7.924 24.325 27 31 64 12.872 14.136 25.948
Gorilla 839092 20 0 3 4 3 6.402 14.82 6.61 10 10 10 38.601 36.671 38.683

iterations total timing total
Problem #triangles #invalids #anchors

iterations to fix timing to fix

iterations total timing total

Problem #triangles #invalids #anchors
iterations to fix timing to fix iterations total timing total

Problem #triangles #invalids #anchors
iterations to fix timing to fix

�ixer
total

runtime

trialstrialstrials

se
co

nd
s

Geko Elephant 115K Gorilla 840K

Figure 24: Testing the impact of setting different hyper-parameters in ABCD(PN) algorithm. We ran 21 trials with different parameters, set
according to Table 1. Each trial tests 10 different meshes. These results are laid out in the six tables; each table compares three successive
trials. The runtimes (seconds) and iteration numbers are reported in the same ways as in Fig. 14. We denote by ‘...’ the cases in which ABCD
have failed to produce inversion-free maps. We select three problems and depict by the bar plot how much time took in each trial to process
these problems. We used the relative energy termination criteria with ε = 10−3. We ran all the tests with Pardiso solver on Intel i7-8565U
CPU with 24GB RAM (4 phys. cores).

Y

yss0 y0 y

X

x0 x

.vs(v)
g

Figure 25: Illustration of the deformation embedding method, descried in Section 12. Left: showing simplicial map g that deforms image
of the Tutte embedding of a decimated mesh Y into the shape of its isometric parametrization. Right: map g is used to initialize mesh X of a
higher resolution.
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D1_00320 1 0 0.088 1.47 1.435 D1_00932 3 0 0.065 0.9 0.932 D1_01540 6 0 0.105 2.617 3.204
D1_00588 1 0 0.082 1.553 1.352 D1_01028 3 0 0.57 6.691 ... D1_02437 6 0 0.153 1.972 3.096
D1_00787 1 0 0.04 0.522 0.689 D1_01101 3 0 0.056 2.768 ... D1_04237 6 0 0.578 9.281 12.935
D1_00826 1 0 0.018 0.295 0.572 D1_01121 3 0 1.632 6.83 12.591 D1_04952 6 0 0.58 6.468 10.825
D1_00988 1 0 0.563 7.144 ... D1_01428 3 0 0.062 0.501 ... D1_04962 6 0 1.627 8.133 11.363
D1_01091 1 0 0.054 2.04 2.845 D1_01488 3 0 0.099 2.077 3.128 D1_00548 7 0 3.429 8.061 6.332
D1_01214 1 0 0.569 6.114 ... D1_01493 3 0 0.145 1.846 3.242 D1_01485 7 0 0.108 2.382 3.238
D1_01249 1 0 1.635 6.526 ... D1_01558 3 0 0.146 2.317 2.935 D1_01939 7 0 0.154 2.55 3.156
D1_01446 1 0 0.046 0.565 0.845 D1_01561 3 0 0.37 2.313 3.25 D1_02425 7 0 0.921 3.219 3.22
D1_01511 1 0 0.053 1.762 3.081 D1_01918 3 0 1.924 4.319 ... D1_04211 7 0 0.393 2.531 3.097
D1_01681 1 0 0.215 6.379 9.758 D1_01936 3 0 0.094 2.691 3.121 D1_04746 7 0 0.107 2.431 2.765
D1_01682 1 0 0.565 6.962 10.334 D1_02576 3 0 1.524 7.79 ... D1_04760 7 0 1.613 8.019 11.689
D1_02559 1 0 0.056 1.667 3.237 D1_02599 3 0 0.098 1.665 3.183 D1_01506 8 0 0.109 0.328 3.139
D1_02567 1 0 0.097 2.065 2.911 D1_02639 3 0 0.055 1.986 3.275 D1_01891 8 0 1.642 7.901 ...
D1_02584 1 0 0.053 2.025 3.21 D1_02644 3 0 0.055 2.03 3.213 D1_01894 8 0 0.587 7.648 ...
D1_02612 1 0 18.605 20.144 3.003 D1_03182 3 0 0.38 2.012 3.002 D1_01963 8 0 0.824 2.432 3.311
D1_02624 1 0 0.052 1.67 3.267 D1_03223 3 0 1.562 7.275 13.805 D1_02442 8 0 1.632 9.099 ...
D1_02664 1 0 0.054 1.743 ... D1_04188 3 0 0.286 6.828 10.74 D1_03587 8 0 0.404 2.762 2.497
D1_02694 1 0 0.053 1.883 3.561 D1_04229 3 0 0.055 1.66 3.058 D1_04749 8 0 0.389 2.912 2.725
D1_02701 1 0 0.221 5.598 13.503 D1_04231 3 0 3.122 6.989 11.65 D1_04919 8 0 0.647 7.424 ...
D1_03199 1 0 0.546 6.142 ... D1_04629 3 0 1.538 6.843 ... D1_04965 8 0 1.544 9.269 10.496
D1_03357 1 0 0.164 0.598 0.518 D1_05104 3 0 0.147 1.979 3.064 D1_00507 9 0 1.949 6.683 7.848
D1_03358 1 0 0.273 1.958 0.932 D1_05146 3 0 0.555 9.468 12.154 D1_00968 9 0 3.453 8.034 ...
D1_03615 1 0 0.055 2.269 2.978 D1_05167 3 0 0.844 2.912 3.177 D1_01013 9 0 4.46 10.9 ...
D1_03670 1 0 0.093 1.593 3.106 D1_00497 4 0 1.863 6.473 6.501 D1_01532 9 0 3.77 8.843 ...
D1_03712 1 0 0.091 2.096 3.14 D1_00960 4 0 3.221 7.041 ... D1_02387 9 0 0.831 2.833 3.482
D1_03717 1 0 0.05 2.99 2.698 D1_00976 4 0 0.088 2.352 ... D1_02413 9 0 0.108 2.78 3.149
D1_03974 1 0 0.459 6.537 ... D1_01031 4 0 0.149 1.818 3.166 D1_02431 9 0 9.371 10.745 3.382
D1_04216 1 0 0.545 5.849 12.265 D1_01151 4 0 0.232 5.858 13.055 D1_04662 9 0 0.111 2.726 2.922
D1_04635 1 0 0.823 3.289 2.456 D1_01525 4 0 0.1 2.561 3.335 D1_00540 10 0 2.175 6.431 6.765
D1_04736 1 0 0.55 6.387 ... D1_01892 4 0 0.101 2.433 3.205 D1_01566 10 0 0.16 2.386 3.172
D1_04861 1 0 0.218 6.631 ... D1_01927 4 0 0.145 1.936 3.187 D1_01904 10 0 0.11 2.489 3.265
D1_04862 1 0 0.236 6.889 ... D1_02445 4 0 1.56 7.478 ... D1_01930 10 0 0.867 3.115 3.134
D1_04937 1 0 0.382 5.815 12.006 D1_02606 4 0 3.157 7.607 ... D1_01945 10 0 0.865 3.45 3.237
D1_05109 1 0 0.053 1.744 3.005 D1_03188 4 0 0.098 2.036 3.104 D1_04927 11 0 3.387 9.587 11.328
D1_05114 1 0 0.366 1.768 3.037 D1_03211 4 0 0.553 7.144 ... D1_01885 12 0 0.596 7.965 ...
D1_01071 2 0 0.053 3.124 2.986 D1_03640 4 0 0.096 1.98 2.958 D1_02405 12 0 0.841 2.896 3.565
D1_01312 2 0 0.531 6.243 6.888 D1_04235 4 0 0.144 2.855 2.98 D1_02418 12 0 4.189 8.942 ...
D1_01313 2 0 0.557 9.215 8.205 D1_04672 4 0 0.1 2.122 2.901 D1_02434 12 0 0.817 3.192 3.284
D1_01447 2 0 0.261 1.007 ... D1_04881 4 0 0.14 2.495 2.101 D1_02443 12 0 0.395 2.633 3.261
D1_01490 2 0 0.384 5.904 15.437 D1_04883 4 0 3.161 8.381 14.011 D1_01906 13 0 1.704 9.053 1.089
D1_01516 2 0 0.054 1.866 3.242 D1_05154 4 0 0.097 2.312 3.146 D1_01950 13 0 22.161 23.431 12.667
D1_01924 2 0 0.369 2.382 3.14 D1_00289 5 0 27.221 28.299 1.923 D1_04222 13 0 3.463 8.119 ...
D1_02571 2 0 1.557 6.72 ... D1_00318 5 0 0.831 2.618 1.805 D1_00940 14 0 3.621 8.251 ...
D1_02574 2 0 0.099 1.687 3.259 D1_00511 5 0 2.108 7.124 6.751 D1_02433 14 0 27.261 30.852 ...
D1_02676 2 0 0.546 7.062 ... D1_00943 5 0 0.13 1.49 ... D1_00474 15 0 7.127 9.981 ...
D1_02711 2 0 0.537 7.112 ... D1_01018 5 0 1.674 7.664 ... D1_01942 15 0 0.876 3.499 3.253
D1_02761 2 0 0.542 6.04 13.497 D1_01530 5 0 0.156 1.992 3.238 D1_00950 16 0 4.171 8.483 ...
D1_03180 2 0 1.705 7.214 9.37 D1_01900 5 0 0.587 6.745 ... D1_00725 18 0 0.395 1.667 0.917
D1_03439 2 0 0.537 12.801 12.21 D1_01948 5 0 0.109 2.945 3.137 D1_02421 19 0 3.381 9.514 ...
D1_03973 2 0 0.526 6.236 ... D1_02440 5 0 0.4 2.266 3.169 D1_02407 21 0 3.369 9.044 ...
D1_04205 2 0 0.099 2.414 2.828 D1_02614 5 0 0.156 2.381 3.29 D1_00307 22 8 ... ... ...
D1_04247 2 0 0.143 2.079 3.057 D1_03440 5 0 41.283 43.301 14.78 D1_00452 22 0 9.51 9.727 0.692
D1_04427 2 0 0.143 1.586 2.791 D1_04647 5 0 0.15 1.905 3.09 D1_00478 22 0 0.991 6.869 8.26
D1_04757 2 0 0.543 7.84 9.873 D1_04697 5 0 0.824 3.152 3.196 D1_02386 23 0 3.653 11.541 ...
D1_04914 2 0 0.054 2.345 2.151 D1_04739 5 0 1.607 8.063 1.119 D1_00973 24 0 24.135 24.487 ...
D1_05091 2 0 0.102 1.796 2.908 D1_00423 6 0 63.743 65.11 ... D1_02404 24 0 3.851 9.328 ...
D1_05093 2 0 0.383 6.15 12.336 D1_00963 6 0 3.458 11.805 ... D1_02392 25 0 3.419 12.083 ...
D1_05096 2 0 0.787 2.872 3.133 D1_01104 6 0 0.105 2.463 3.151 D1_03178 25 0 246.433 259.389 10.469
D1_05098 2 0 0.219 6.508 ... D1_01106 6 0 1.628 6.909 ... D1_03177 26 0 220.732 228.33 9.732
D1_05129 2 0 0.056 1.734 2.892 D1_01501 6 0 0.152 2.125 3.203 D1_02395 28 0 18.26 20.743 ...
D1_05149 2 0 0.052 1.665 3.047 D1_01527 6 0 0.578 6.982 ... D1_02398 45 0 5.76 16.529 ...
D1_00310 3 0 59.524 60.868 1.853 D1_01535 6 0 0.059 2.471 3.128 D1_01008 52 0 23.894 27.549 ...

D1_02401 102 0 42.487 42.851 ...

Figure 26: All the results of the conformal initialization experiment (some were depicted by Fig. 12). Each table shows from left to right:
a mesh file name from PP dataset [LYNF18]; an initial number of invalid (inverted and collapsed) triangles, obtained in BFF mapping;
a number of invalid triangles, obtained after running ABCD(PN); time (seconds) until ABCD(PN) fixes all invalid triangles; a time until
ABCD(PN) converges; a time that took to compute a standard isometric parametrization with PN solver, initialized by Tutte mapping into a
disc. We denote by ‘...’ the cases in which ABCD(PN) or Tutte embedding fail to produce inversion-free maps. We used the relative energy
termination criteria with ε = 10−3. These meshes were tested with Pardiso solver on Intel i7-6500U CPU with 16GB RAM (2 phys. cores).
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