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Abstract—The most common security authentication systems
rely on automatic face recognition, which is particularly vul-
nerable to various spoofing attacks. Often these attacks include
attempts to deceive a system by using a photo or video recording
of a legitimate user. Recent approaches to this problem are based
on pure machine learning techniques that require large training
datasets and generalize or scale, poorly.

By contrast, we present a geometric approach for detecting
spoofing attacks in face recognition based authentication systems.
By locating planar regions around facial landmarks, our method
distinguishes between genuine user recordings and recordings of
spoofed images such as printed photos and video replays.

The proposed algorithm is based on projective invariant
relationships that are independent of the camera parameters
and lighting conditions. Unlike previous geometric approaches,
the input to our system is a stream of two RGB cameras.
Comparing with methods implemented by a single RGB camera,
our approach is significantly more accurate and is completely
automatic, since we do not require head movements and other
user interactions. While, on the other hand, our method does not
employ expensive devices, such as depth or thermal cameras, and
it operates both in indoor and outdoor settings.

I. INTRODUCTION

Projective invariants are certain geometric properties pre-
served under perspective and orthographic projections. In the
context of face anti-spoofing application, we are interested in
projective invariance of certain sets of facial landmark points.
In particular, we employed the so called five point cross-
ratio, referred for short as to cross-ratio. This quantity is the
projective invariant of five coplanar points.

Assume that p1, p2, · · · , p5 are five points located on a
plane Φ in R3, and let p′1, p

′
2, · · · , p′5, be the corresponding

projection of these points using the pin-camera model, as
illustrated in Fig. 1. Then, the five point cross-ratio quantity
is defined up to a permutation of point indices as the ratio of
triangle areas

γ(p1, p2, p3, p4, p5) =
A′514A

′
523

A′513A
′
524

, (1)

where A′ijk denotes the signed area of the projected trianglea
(p′i, p

′
j , p
′
k). According to the theory of projective geometry,

γ(p1, p2, p3, p4, p5) is independent of camera orientation as
long as the camera direction ray is not contained in the
objective plane Φ. Using state-of-the-art methods for detecting
facial landmarks in images, we can measure γ with sufficiently
high precision.

Assume γ1 and γ2 are the cross-ratio measurements ob-
tained from two cameras for a set of non-coplanar facial

landmarks p = (p1, ..., p5), as illustrated in Fig. 2, we expect a
significant deviation in γ1 and γ2 values for genuine recordings
of a three-dimensional face, while spoofing attacks, such as
demonstrated by video replays or printed images, will result
in nearly identical cross-ratio values, since in these cases
landmarks are projected from a flat surface. Consider the cross-
ratio difference

∆γ(p) = |γ1(p)− γ2(p)| , (2)

and assume that an anti-spoofing algorithm detects point
coplanarity if ∆γ(p) is bellow some constant threshold value
ε. According to our simulations on synthetic data, this simple
approach works well if 2D landmarks are detected with high
precision. In such cases ε can be set very close to zero.
However, processing of real data in varying lighting conditions
and camera settings inevitably introduces substantial noise in
detected landmark positions and, thus, ∆γ(p) measurements
may differ significantly along the same video recording. Con-
sequently, analysis of real data requires a per-frame calibration
of the threshold ε, based on geometric considerations and
scene configurations.

In view of the above observations, we propose a heuristic
approach based on comparison of the average ∆γ(p) values
with a predicted model of facial landmarks.

II. RELATED WORK

Invariant relationships of the projective and differential
geometry were extensively employed during the past decade in
computer vision applications for object analysis and recogni-
tion. However, early applications, such as [9], [4] and [3], led
to poor results, since these methods employed low resolution
sensors and their computations were based on old generation
of vision algorithms for feature point detection.

Five and four point cross-ratios were employed in number
of face recognition and authentication applications [5] and [3].
The work of [5] suggested to measure γ(pi) for landmarks
obtained in n frames, where changes of pose where detected.
If Var (γ(pi)) < ε, then the system identifies point planarity
and spoofing attack is detected. According to our tests, the
proposed method is unreliable in practice due to the following
drawbacks and non-realistic assumptions:

1) Often there are no detectable relative movements between
the user and the camera, and thus the system expects
intentional user movements, including number of head
rotations.
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Fig. 1. Projection of five coplanar points from objective plane Φ into the
image plane via the camera placed at the origin.

2) Facial landmarks set is not rigid, since mutual point
distances vary from one facial expression to another (e.g.,
distances between eye and mouth corners).

3) This method can protect only from static images (print
attacks), but not from spoofing videos, since in video clips
2D landmarks can move non-rigidly on the screen.

Algorithm 1 Algorithm for face anti-spoofing
Input:
• Image sequence I1j , ..., INj for j = 1, 2, where Iij is the
ith frame image of the jth camera.
• Parameters W = (w1, ..., w5), where wi is the predicted

coordinates of the ith landmark point in NHCS.
• Internal model parameters δ1 < δ2.

1: Initialize: ΣP ←[ 0, ΣQ ←[ 0.

2: for i = 1, ..., N do
3: for j = 1, 2 do
4: p1, p2, ..., p5 ← [ projection of non-coplanar facial

landmarks detected in Iij .
5: B ←[ estimates of the head bounding box in 3D.
6: q1, q2, ..., q5 ← [ predicted landmark positions in 2D

obtained by W and B.
7: γij(p)←[ γ(p1, p2, p3, p4, p5).
8: γij(q)← [ γ(q1, q2, q3, q4, q5).
9: end for

10: ΣP ← [ ΣP + |γi1(p)− γi2(p)|.
11: ΣQ ← [ ΣQ + |γi1(q)− γi2(q)|.
12: end for

13: if ΣP < δ1ΣQ , then
14: Classify as “spoofed”.
15: else if ΣP > δ2ΣQ , then
16: Classify as “genuine”.
17: else
18: Classify as “undecided”.
19: end if

III. THE METHOD

Revisiting the previous methods for face authentication and
anti-spoofing, we suggest the following approaches for the
efficiency and performance improvement:

1) Our system employs two web-cameras to attain a stereo
recording. This approach enables to simultaneously cap-
ture the scene from two different viewpoints and releases
users from mandatory interactions.

2) Our algorithm is based on a new generation of facial
landmark detectors.

3) By continuously tracking of the head pose, we predict
3D position of chosen landmark points and project them
using camera parameters into pixels. Then, cross-ratios
measurements of detected and predicted points are com-
pared to distinguish between real human face and spoofed
images.

Since we do not employ depth cameras, our system can
measure directly only 2D positions of points projected form
3D into camera image planes. Nevertheless, as presented in
Algorithm 1, our technique integrates both the direct measure-
ments of two dimensional data and our estimates of related 3D
features.

The first step of our method is the detection of two ordered
sets of facial landmark points in R2, denoted by p′ and
w′, respectively. The 5-tuple p′, used for the cross-ratio
computation, is the projection of chosen five non-coplanar
points p; while w′ is a larger set of rigid landmarks employed
for head pose estimation.

The head pose is represented by the transformation (R, t)
in the Camera Coordinate System (CCS), where R is the
rotation matrix and t is the translation vector. In particular,
t and R define the origin and the coordinate axes of the Head
Coordinate System (HCS), respectively. Furthermore, camera
parameters and mutual distances between points of s′ are used
for approximating dimensions h = (hx, hy, hz) of the head
bounding box in the HCS. Together, the triplet (R, t,h) forms
the HCS-to-CCS transformation T . As depicted in Fig 3, this
leads to the definition of the Normalized Head Coordinate
System (NHCS), where positions of the right-top-forward and
left-bottom-back corners of the head bounding box are set to
(1, 1, 1) and (−1,−1,−1), respectively.

The input parameters of Algorithm 1 include mean positions
W = (w1, .., w5) in NHCS of the landmarks p = (p1, ..., p5).
The values of W are evaluated only once in the offline
process of minimizing distances between camera projections
T (w1), .., T (w5) and landmarks p′1, .., p

′
5 detected over a large

set of recorded images. During the online stage, (w1, .., w5)
are transformed to CCS and then projected using camera
parameters to predict 2D position q = (q1, ..., q5) of the
landmarks.

Finally, cross-ratio differences ∆γ(p) and ∆γ(q) are com-
pared for evaluating image authenticity. By employing ad-
ditional parameters δ1 and δ2, Algorithm 1 classifies image
sequences into one of the following categories: spoofed, gen-
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uine and undecided images. The flowchart of Algorithm 1 and
related techniques is presented in Fig. 5.

By testing various configurations of points p′ chosen to
compute cross-ratios, the best results are considered to be
achieved for the following landmark selection: middle nose,
eye and moth corners (see Fig. 2 and 3).

Note that in order to complete the authentication process
the system should identify person form the list of authorized
users using a face recognition block, as depicted in Fig 5.

IV. IMPLEMENTATION

We have written our algorithm in C++ using OpenCV, Dlib
and OpenFace [2] facial analysis toolkit. The code is based
on HOG SVM face detector and CLNF model [1] for facial
landmark localization. Our algorithm can be run in single and
multi-face modes and it was tested on number of RGB cameras
with 30 FPS recording rates.

During the testing, we sample each 8th frame of the first and
second camera into blocks of eight images passed to Algorithm
1 as the input parameters I1j , ...I8j .

The oflline stage, including data analysis and evaluation of
optimal algorithm parameters, was implemented in MATLAB.
For testing synthetic data, we employed Blender modeling
software along with freely available 3D face scans.

V. RESULTS

We first experiment with synthetic face data, where p′ are
computed directly from 3D via the camera projection matrix.
In this scenario, we achieve almost 100% accuracy by taking
ε ≈ 10−6 as the threshold that divides ∆γ(p′) values into
planar and three-dimensional face categories. Example of two
synthetic models that represent a genuine face and a spoofed
image are shown in Fig. 2.

Next, we test our method on several online video sessions
that include number of participants and different print and
video spoofing attacks. Under proper positions of cameras and
with well tuned parameters, the system can detect face three-
dimensionality with about 85% accuracy. Fig. 4 demonstrates
our results obtained from few indoor video sessions.

VI. DISCUSSION AND CONCLUSIONS

Our lightweight approach to face anti-spoofing is based on
detecting three-dimensionality of landmark points. In contrast
to other methods, such as these presented in [6] and [8],
we achieve satisfactory results without employing expensive
sensors and heavy computations.

Our technique can be employed in alternative settings where
deployment of the second camera is impractical (e.g., mobile
devices). In particular, the absence of a second RGB camera
may be compensated by employing a single movable camera or
a single static camera with a mirror. Capturing face reflections
in the properly placed mirror attains a second vantage point
and, thus this approach readily fits into our framework. If
FPS rate and velocity of a movable camera are sufficiently
high, then two frames acquired within a short time period
approximate stereo imaging. As illustrated in Fig. 5, Algorithm

Fig. 2. Five non-coplanar facial landmark points selected to measure (1) with
examples of frames taken from different cameras for synthetic 3D face (left)
and its images displayed on a flat surface (right).

1 can be integrated into any setting capable of recording the
scene from two real or artificial viewpoints.

Our algorithm can be improved in straightforward manner
by employing latest state-of-the-art methods for landmark
detection and head pose estimation [7]. Employing several sets
of five non-coplanar landmarks yields a more robust algorithm
version, since then the cross-ratio data can be measured from
one or many different facial areas, depending on the head-
camera angles.

The proposed approach can be extended to a model with
more internal parameters and more landmark estimates. Then,
a more sophisticated classifier can be trained using standard
machine learning techniques. Further, combination of our
approach with device based methods can be employed for
detecting hardly noticeable fraud actions such as movable
mask attacks. These and other geometry-based methods for
anti-spoofing are currently under investigation.

APPENDIX

The relationship of (1) is formalized as follows:

Theorem 1. Let P1, ...P5 be coplanar points in 3D, such that
no three points are placed on the same line. Denote by P ′i =
(x′i, y

′
i, z
′
i) the projection of Pi = (xi, yi, zi) for i = 1, .., 5

and denote by Akij and A′kij the area of triangles
a
PkPiPj

and
a
P ′kP

′
iP
′
j , respectively; then,

Aσ(5,1,4)Aσ(5,2,3)

Aσ(5,1,3)Aσ(5,2,4)
=
A′σ(5,1,4)A

′
σ(5,2,3)

A′σ(5,1,3)A
′
σ(5,2,4)

, (3)

where σ(k, i, j) = (σ(k), σ(i), σ(j)) denotes a permutation of
indices (1, 2, 3, 4, 5).

Proof. Without loss of generality assume ∀i : σ(i) = i as
presented in equality (1). Each pair of (Pi, P

′
i ) points are

located on the same line passing through the origin, thus

∀i :
x′i
y′i

=
xi
yi
,
y′i
z′i

=
yi
zi
. (4)

Writing equations of objective and image planes for points Pi
and P ′i implies

a

d
xi +

b

d
yi +

c

d
zi + 1 = 0 =

a′

d′
x′i +

b′

d′
y′i +

c′

d′
z′i + 1 . (5)
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Combining (4) and (5) together yields the matrix equation
of the form

N ′(a′, b′, c′)X ′ij = N(a, b, c)Xij , (6)

where

Xij =


1
0
0
0

1

z5


1
x5
y5
z5

 1

zi


1
xi
yi
zi

 1

zj


1
xj
yj
zj


 , (7)

N(a, b, c) =


0 0 0 1
0 1 0 0
0 0 1 0

1
a

d

b

d

c

d

 , (8)

and X ′ij is defined similarly to (7) with respect to coordinates
of projected points P ′5, P

′
i , P

′
j . Equation (6) yields the follow-

ing equality of the determinant products

|N ′||X ′ij | = |N ||Xij | . (9)

Furthermore, the product and ratio of (9) with indices (i, j)
taken from (1) implies

|X14| |X23|
|X13| |X24|

=
|X ′14| |X ′23|
|X ′13| |X ′24|

. (10)

The determinant of Xij can be evaluated using the volume
formula for tetrahedron with height d (equals distance between
the origin and the objective plane) as follows

|Xij | =
1

z5zizj
det


1
0
0
0

1
x5
y5
z5

1
xi
yi
zi

1
xj
yj
zj

 (11)

=
2d

z5zizj
A5ij . (12)

Finally, (10) and (12) prove the theorem.
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Fig. 4. Face anti-spoofing results are depicted on top by pairs of chosen stereo frames, marked by Algorithm 1 with “S” (spoofed) and “G” (genuine) labels.
The bottom plot depicts for each pair of frames the following quantities, employed in the algorithm: thresholds δ1ΣQ and δ2ΣQ, cross-ratio difference ΣP

measured from the landmarks, ranges of ΣP values that belong to “spoofed” and “genuine” classes.
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Fig. 5. Flowchart of a general authentication system based on Algorithm 1, where p,p′ and q, q′ denote landmarks of the 1st and 2nd viewpoints, respectively.


