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Abstract—Change detection is of paramount importance
in medical imaging, serving as a non-invasive quantifiable
powerful tool in diagnosis and in assessment of the outcome
of treatment of tumors. We present a new quantitative method
for detecting changes in volumetric medical data and in
clustering of anatomical structures, based on assessment of
volumetric distortions that are required in order to deform
a test three-dimensional medical dataset segment onto its
previously-acquired reference, or a given prototype in the case
clustering. Unlike the voxel-based classical techniques of shape
comparison, our algorithm operates on tetrahedral meshes and
can, therefore be applied on both closed, simply-connected,
surfaces and in volumetric domains with more sophisticated
boundaries.
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I. INTRODUCTION

With the recent advance in 3D medical scanning devices
there is a fundamental need for quantifiable geometric
properties suitable for disease diagnosis and for detecting
changes during therapeutic interventions. As shown by [8],
the ability to detect and localize changes in brain tumors,
observed by CT or MRI, has a significant implication for
clinical manifestations and diagnosis of the disease. Studies
suggest that volumetric changes in some brain regions can
be attributed to ageing [2], while changes in other areas are
linked to certain diseases, such as autism and epilepsy [3].

We present a new geometric approach for detecting
changes in medical images and for clustering equivalent
classes of anatomical disorders. Our input data are assumed
to be a set of volumetric domains, or a set of simply-
connected closed-surfaces that enclose well defined interior
volumes. In order to detect discrepancy, or assess similarity,
between geometric structures, we consider distortions of
basic geometric properties associated with deformations of
one 3D segment into another.

Our approach is motivated by behavior of conformal and
isometric mappings in 3D space, but it can be extended to
higher dimensions. In particular, for a deformation function
f , defined to be a local diffeomorphism of a volumetric do-
main, we measure lengthwise and anglewise distortions, re-
ferred to as conformal and isometric distortions, respectively.
According to [4] and [5], these quantities are measured at

Figure 1. Mapping (1) of a tetrahedral brain model (left) into its bounding
ball. RGB color values correspond to spherical coordinates (r,ϕ,θ) of the
source domain.

Figure 2. Stages of the proposed algorithm, illustrated for a typical hip-
pocampus model, are included from left to right: original mesh, tetrahedral
mesh of a canonical form and its image under deformation (1).

point x as a function of the singular values of the Jacobian
matrix of f .

Global changes in geometric structures can be assessed by
a weighted average of the distortion measures over a target
domain. We adopt the method of [5] which uses partition of
discrete volumes into tetrahedrons.

The main step in our algorithms is construction of a
deformation function between a given test source and a
basic target domain. Since there is no single robust algorithm
that arbitrarily deforms one shape into another, we consider
deformations of an arbitrary volumetric domain D into a
reference ball, defined in spherical coordinates according to
[5] by

(r,ϕ,θ) 7→
(

R
r

d(ϕ,θ)
,ϕ,θ

)
, (1)

where d(ϕ,θ) is a distance from the origin to the farthest
point on the boundary, measured at radial angle ∠(ϕ,θ), and



Figure 3. Scatter plots show results of comparison between left and right
hyppocampi and classification of brain segments based on Algorithm 1.
These segments include: brain stem, amygdala and hippocampus.

Figure 4. Two left and two right hippocampal regions (shown from left
to right ). The colors depict conformal distortions measured for volumetric
deformation of these regions into a ball defined by (1).

R is a radius of the bounding sphere of the domain D. This
method is applicable for discrete representations of medical
data, as illustrated in Fig. 1.

In order to deal with artifacts caused by uncertainties
associated with scanning devices, we employ a classical
multidimensional scaling (MDS) method [9] to construct a
canonical form of the input data. This type of preprocessing,
removes noise and globally preserves shapes (see Fig. 2).

II. VOLUMETRIC DISTORTIONS

A common way to represent volumetric data for numerical
computations is by decomposition of the continuous domain
into tetrahedrons by implementing a tetrahedral meshing
algorithm. Let (V,T ) be a tetrahedral mesh that represents a
continuous medical volumetric segment D, where V and T
denote vertex and tetrahedra set, respectively. Assume u=
(u1, ...,um) is the sampling of a given mapping f : D→ R3

on the vertex set, i.e., f (vi) = ui for each vi ∈V . Then, the
triplet (V,T,u) defines a discrete deformation of the volume
D.

Algorithm 1 measures conformal and isometric distor-
tions associated with the volumetric mapping (V,T,u) via
construction of simplical mappings (for details see [5]). In
particular, if the mapping f is defined according to (1),
then a weighted average of the resultant distortions over
source tetrahedra (Fig. 3) provides a qualitative measure
of the similarity between the segment D and the bounding
ball. While distortion measures per boundary vertex (Fig. 4)

indicate the local deviation from a round surface, or from the
bounding surface of another suitable geometrical reference
object of choice such as, for example, ellipsoid, cylinder or
torus (see Fig. 5 ).

Weights used in the averaging of volumetric distortions
can be directly sampled from the values of MRI intensity,
or the proper signal characterizing the physical measure of
any other imaging modality.

Algorithm 1: ComputeDistortions(V,T,u)
Input:

Deformation of a tetrahedral mesh (V,T ) represented
by u.

• Construct the simplical mapping φ :
⋃

t∈T{t}→ R3

such that φ(vi) = ui for each vi ∈V .
foreach t ∈ T do

• φt ← [ linear part of φ restricted to t.
• (σ1,σ2,σ3)← [ singular values of φt put in the

descending order.

• conf(t)←[max
{

σ2
1

σ2σ3
,

σ1σ2

σ2
3

}
.

• isom(t)← [max
{

σ1,σ
−1
3

}
.

Output:
Conformal and isometric distortions per each
tetrahedron t ∈ T , denoted by conf(t) and isom(t),
respectively.

III. IMPLEMENTATION

We illustrate the implementation of our geometric ap-
proach in sorting of brain tissue obtained by our colleagues
at the Dalian Medical University. The first database (Fig.
3) contains segments of 44 brain CT scans that include
healthy subjects and epileptic patients. The second dataset
contains brain tissue scans of additional 200 subjects (Fig.
6). The boundary of each segment is approximated by a
triangular surface and the enclosed volume is represented
by a tetrahedral mesh produced via Delaunay triangulation.

As shown in Fig. 3 and 6, our method can classify various
segments of brain scans and distinguish between left and
right counterparts of hippocampi. The approach is applicable
also to other organs and can be employed in statistical
analysis.

Furthermore, Algorithm 1 can be straightforwardly gen-
eralized to deal with wide class of geometric measures and
energies, locally expressed by the singular values σ1,σ2,σ3.
For instance, the elasticity and the smoothness energies,
measured over source tetrahedron t ∈ T , can be estimated
by the quantities (σ1 − 1)2 + (σ3 − 1)2 and σ2

1 + σ2
2 + σ2

3,
respectively.



Figure 5. The figure contains (from left to right) : source cube, cross
section of its image under the mapping (1), deformation of the cube into a
solid cylinder. The last deformation is constructed according to [5]. Colors
of target domains depict distribution of conformal distortion.

IV. CONCLUSION

Compared with classical methods based on voxel mor-
phology [1], [2] and related studies [7], our technique has
the merit of both the global and individual comparisons.
Moreover, tetrahedral meshes require in general much lower
number of data samples than voxel images, since it consti-
tutes a 3D signal-specific nonuniform representation scheme.

Our algorithm is capable of detecting small deviations in
curvature and smoothness of the boundary surface. Accord-
ing to some cancer studies [8], these deviations play a critical
rote in decoding tumor phenotype. On the other hand, our
technique is likely to rely more on the quality of boundary
surfaces obtained in the segmentation process.

Since we employ pure geometric tools, our algorithm
is fast and it requires much simpler implementation than
related dictionary learning techniques [6], [7].

Medical validations and human inspections will be in-
cluded in future work.
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