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A B S T R A C T

This paper addresses a general problem of computing inversion-free maps between con-
tinuous and discrete domains that induce minimal geometric distortions. We will refer
to this problem as optimal mapping problem. Finding a good solution to the optimal
mapping problem is a key part in many applications in geometry processing and com-
puter vision, including: parameterization of surfaces and volumetric domains, shape
matching and shape analysis. The first goal of this paper is to provide a self-contained
exposition of the optimal mapping problem and to highlight the interrelationship of var-
ious aspects of the problem. This includes a formal definition of the problem and of
the related unitarily invariant geometric measures, which we call distortions. The sec-
ond goal is to identify novel properties of distortion measures and to explain how these
properties can be used in practice. Our major contributions are: (i) formalization and
juxtaposition of key concepts of the optimal mapping problem, which so far have not
been formalized in a unified manner; (ii) providing a detailed survey of existing meth-
ods for optimal mapping, including exposition of recent optimization algorithms and
methods for finding injective mappings between meshes; (iii) providing novel theoreti-
cal findings on practical aspects of geometric distortions, including the multi-resolution
invariance of geometric energies and the characterization of convex distortion measures.
In particular, we introduce a new family of convex distortion measures, and prove that,
on meshes, most of the existing distortion energies are non-convex functions of vertex
coordinates.

c© 2020 Springer B.V. All rights reserved.

1 Introduction

One of the central issues in geometry processing and imaging
is how to incur minimal distortion to original shape when de-
forming it to satisfy certain geometric constraints. This problem
is often solved by optimization of geometric energies defined in
a finite element fashion: the original shape is encoded by a sim-
plicial complex, its global deformation is described by a simpli-
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cial map on that complex and the shape distortion is computed
as a sum of local distortions over individual simplices. The goal
is to find a simplicial map that minimizes the shape distortion
and induces a consistent orientation of simplices (inversion-free
mapping).

For example, consider a texture mapping problem — a pro-
cess in which an RGB image is wrapped around a three dimen-
sional object. This problem is also referred to as the surface pa-
rameterization or surface flattening. To illustrate, given a piece
of cloth with an image printed on it, we want to stretch it and
fold it around a triangulated surface in R3 causing as few dis-
tortions to the printed image as possible. The same problem

https://www.springer.com/journal/10851
https://link.springer.com/article/10.1007/s10851-021-01038-y


2 Preprint / Journal of Mathematical Imaging and Vision (2020)

Fig. 1: Mapping complex 3D objects into the plane and onto canonical domains
to get a simplified representation of these objects. At the top, we show texture
mapping of the brain surface obtained by solving the distortion minimization
problem on the triangle mesh. To get a continuous map, we cut the source do-
main into a disc-topology surface and minimize isometric distortion, induced
by the texture mapping. In the middle, we show the mapping of genus-0 trian-
gle mesh onto a sphere via the linear harmonic method [CLL15]. At the bottom,
we extend harmonic mapping of the surface of the right hemisphere into its vol-
ume, represented by a tetrahedral mesh. The volumetric map is computed by,
first, stretching rays between the origin and boundary vertices according to their
mutual distances (radial stretching method [NCQ∗18]), and then, by optimiz-
ing isometric distortion over interior tetrahedra. On the right side, we depict
histograms of average singular values (78) (approximate conformal factors) of
maps between simplices.

can be generalized from surfaces to volumetric domains. For
instance, consider parameterization of a three dimensional ob-
ject, obtained by mapping its interior onto a simple domain,
such as a cube or a ball (a canonical domain). In many fields,
including machine learning and medical imaging, data, sam-
pled on surfaces and volumetric regions, are parameterized and
mapped onto a canonical domain. This way one can standardize
geometric data across different samples.

For example, it is simpler to compare segments of CT scans
by mapping these segments into a common canonical domain,
where changes in geometric features can be detected more eas-
ily (see Fig. 1). Similarly, in machine learning, it is simpler to
train a neural network on regular data, such as a collection of
RGB images, than training it on triangulated surfaces. By using
texture mapping, one can map surfaces into images and there-
fore, one can generalize neural network architectures, designed
for images, to surfaces (see Fig. 2).

Shape matching is another problem that involves mapping
between triangulated domains with low geometric distortions.

If a mapping preserves essential geometric features, then it can
be used to transfer data between multiple domains. For exam-
ple, shape matching methods can be used to transfer textures
between surfaces, labels between volumetric medical images
and etc.

To summarize, in all these examples, our task is to compute a
“nice” deformation of a compact subset of Euclidean space that
minimizes selected distortion criteria and whose image satisfies
certain geometric constraints.

As can be anticipated, “nice” is not a universal property but
a task related notion, such as visual image distortion avoid-
ance, map injectivity and etc. In practice, very many physi-
cally motivated distortion criteria can be formulated in terms of
constrained energy minimization problems. By minimizing dis-
tortions, one is able to compute, in reasonable time, simplicial
maps with low energy penalty that satisfy prescribed geometric
constraints. We will refer to this type of problems as distortion
minimization problems.

Most generally the problem can be stated as follows. Given
a shape S, find a transformation f of the shape S, in the family
G, to minimize a distortion measure E, under geometric con-
straints that a subset S0 ⊂ S of the shape maps to a given set
S′0:

f ∗ = argmin
f∈G

E( f );

s.t. f (S0) = S′0.
(1)

We refer to a solution f ∗ of problem (1) as an optimal map-
ping. The resulting problem involves a non-convex objec-
tive, defined over a highly non-convex domain1. This leads to
complex non-linear optimization problems for which standard
methods are not effective. Consequently, existing approaches
to minimizing distortions are aimed at computing sufficiently-
good minimizers of (1) with limited guaranties of obtaining a
global minimum. Nevertheless, there are numerous methods
for obtaining an approximate solution of the above problem,
where optimization is guided by some heuristics, or by employ-
ing some indirect approaches.

Distortion minimization problem is especially prevalent in
two and three dimensions, where many real world problems
are encountered. This includes applications in: digital geom-
etry processing and graphics [SPSH∗17, CBSS17, RPPSH17,
NZZ20, LYNF18, ZBK18, WG10] (Figs. 11, 6c), image pro-
cessing [HHS∗19, CG16] (Fig. 2), computer vision [KABL14,
MCSK∗17, BCG08, HZFH19] (Figs. 2, 6d), computer-aided
geometric design [ESCK16, XCGL11] (Fig. 20), physical sim-
ulations [PDZ∗18, WSSC11, YLYW18] (Fig. 6b) and medi-
cal imaging [GWC∗04, CLL15, NCQ∗18, SABS∗08, BLC∗11]
(Figs. 1, 10 (top)).

Although there exist many approaches to the distortion min-
imization problem, methods used in practice lack a rigor-
ous mathematical foundation. Many existing methods rely on
heuristics built upon empirical observations. Whereas mathe-
matical studies, often, dive deeply into an abstract theory that is
far remote from practice.

1See Section 8 for the explanation of what we mean by a “highly non-
convex” domain.
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Fig. 2: An example of surface flattening employed for texture representation of 3D faces in neural networks. From the left to right: 3D face dense reconstruction of
[FWS∗18] neural network, Tutte embedding into a square, Tutte embedding into a convex shape inside a square (used in the training of [FWS∗18]) and optimized
Tutte embedding, obtained by minimizing isometric distortion via the projected Newton method.

In this work, we attempt to close the gap between practi-
cal applications and the underlying mathematics by exploring
distortion minimization problem in depth, suitably formulating
the problem with a proper balance between mathematical rigor
and practical considerations. We analyze computational aspects
of the existing methods and provide novel theoretical findings
on how geometric distortions and methods used for minimizing
these distortions behave in practice.

Our main contributions are:

• We provide a formal definition of the key concepts of
the optimal mapping problem and of the related distortion
measures, which so far have not been formalized in a uni-
fied manner (Sections 2 and 3).

• We give an extensive overview of the relevant methods
for distortion minimization and inversion-free mappings,
and we analyze important computational aspects of these
methods (Sections 4-7). In particular, we provide a sur-
vey of recent algorithms for non-linear optimization (Sec-
tion 4.3), we compare the continuous versus discrete prob-
lem of optimal mapping and explaining the inherent dif-
ferences between discrete and continuous maps (Sections
7).

• We identify properties of the problem that, to the best of
our knowledge, have never before appeared in the litera-
ture: (i) characterization of fundamental properties of con-
vex distortion measures and introduction of convex geo-
metric distortions using symmetric gauge functions (Sec-
tion 8); (ii) the multi-resolution invariance of distortion
measures (Section 9).

The paper is organized as follows. In Section 2 we focus on
a continuous formulation, where we define the appropriate set
of domains and transformations between them (Section 2.1).
We then proceed to formally introduce local functionals that
enable to quantify locally how much a transformation distorts
the shape it operates on (Section 2.4). A canonical character-
ization of distortion measure is given in Section 2.5. We then
address the discrete setup in Section 3, and formulate the dis-
tortion minimization problem for the discrete case (Section 4).
The rest of the paper covers different optimization schemes
(Section 4.3), analyzes convexity of the underlying minimiza-
tion problem (Section 8) and its dependence on mesh resolution

(Section 9). Our paper is concluded with an analysis of certain
numerical aspects of the problem (Appendix A). Furthermore,
we provide supplemental material with additional results, in-
cluding a discussion of a variational-based formulation of the
optimal mapping problem.

Since a significant part of our paper is dedicated to formaliza-
tion of well-established concepts, readers who are well versed
in the background and are more interested in novel results may
start reading the paper from Section 8.

2 Continuous Problem

We first consider a general formulation of the problem
for continuous, but not necessarily everywhere-differentiable,
maps between Euclidean domains. We are interested in theory
that includes non-differentiable maps, since later on, in discrete
formulation of the problem, we will be dealing with simplicial
maps which are the main object of interest in geometric pro-
cessing. These maps constitute a family of piecewise linear
functions that are non-differentiable on simplex faces. Formu-
lations for non-differentiable maps, established in this section,
will allow almost seamless transition between continuous and
discrete scenarios. We will return to this point later in Sec-
tion 7, after we have introduced the discrete setup. In the next
section, we provide a formal definition of the relevant family of
maps, G, and domains over which these maps operate, then we
define measure of distortion for these maps (Section 2.4).

2.1 Domains and Maps

We are concerned with two families of maps: continuous lo-
cally injective maps and smooth locally injective maps of Eu-
clidean domains. The purpose of this section is to rigorously
define these families of maps and outline the relevant notation
that will be used throughout the rest of the paper.

Given a set S ⊆ Rn, we will denote by int(S) the interior of
the set. For a map of the form

f : S⊆ Rn→ S′ ⊆ Rn,

we will denote by Dom( f ) the domain of f , so
Dom( f ) = S ⊆ Rn, and by Img( f ) we will denote the
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co-domain (image) of f . Throughout the paper we will call the
domain of map a source and the co-domain a target.

Finally, a compact set S ⊂ Rn is called a proper domain of
Rn if it has non-empty interior, that is, int(S) 6= ∅.

Definition 2.1 (Local homeomorphism). Let S be proper do-
main of Rn, a continuous map

f : S→ S′ ⊂ Rn,

is called a local homeomorphism if almost everywhere in int(S)
there is a neighborhood of rrr ∈ int(S), called a local neighbor-
hood of f at rrr, on which f is a continuous bijective map. We de-
note the family of such homeomorphisms by Hom(Rn). Wher-
ever we will wish to restrict the family by fixing domain of the
maps Dom( f ), or both the domain and the co-domain Img( f ),
we will write Hom(S,Rn) or Hom(S,S′), accordingly. Thus,
f ∈ Hom(S,Rn) implies that Dom( f ) = S and f ∈ Hom(S,S′)
implies that it is also required that Img( f ) = S′.

Definition 2.2 (Local diffeomorphism). Let S be proper domain
of Rn. A continuous map

f : S→ S′ ⊂ Rn,

is called a local diffeomorphism if almost everywhere on int(S)
there is a neighborhood of rrr ∈ int(S), called a local neighbor-
hood of f at rrr, on which f is a smooth bijective map with
smooth inverse. [Note that any local diffeomorphism is a lo-
cal homeomorphism but not visa versa.] We will denote the
family of such diffeomorphism by Diff(Rn). If we want to
restrict the family by fixing the proper domain S or both the
proper domain and the co-domain S′ we will write Diff(S,Rn)
or Diff(S,S′) accordingly. So that for any f ∈ Diff(S,Rn), we
have Dom( f ) = S; and for any f ∈Diff(S,S′)⊆Diff(S,Rn), we
have Img( f ) = S′.

The above definitions are local in nature, and therefore we do
not require that maps in Diff(Rn) are everywhere differentiable.

Definition 2.3 (Local first-order equivalence). Assume that
f ,h ∈ Hom(Rn) and rrr0 ∈ Rn such that f (rrr0) = h(rrr0).
We say that f and h are first-order equivalent on rrr0, f ' h, if
there is a neighborhood N0 ⊂ Dom( f )∩Dom(h) of rrr0 such
that

‖ f (rrr)−h(rrr)‖= o(‖rrr−rrr0 ‖) ,∀rrr ∈ N0.

It is a routine procedure to verify that local first-order equiva-
lence at rrr0 defines an equivalence relation on Hom(Rn).

As hinted by the above equivalence relation, we will be in-
terested in only first order approximations of the maps, thereby
we will be able to approximate Hom(Rn) by piecewise linear
maps in Diff(Rn). The benefit of working with Diff(Rn), is that
we can take advantage of differentiability of the latter family
of maps. Singular values of Jacobians will be extremely use-
ful when we come to analyze distortion measures, so much so
that we dedicate a separate lemma to recall two crucial facts
about Jacobians of local diffeomorphism and to fix the relevant
notation.

Lemma 2.1 (Singular values of Jacobian). Let f ∈ Diff(Rn).
We denote by d frrr the Jacobian of f at rrr ∈ Dom( f ). Then,
for each rrr ∈ Dom( f ), d frrr is a full rank square matrix
n-by-n and, therefore, all its singular values are positive.
We will denote singular values in the descending order by
σ1(d frrr), . . . ,σn(d frrr).

Proof. It follows directly from the definition of Diff(Rn), since
it implies invertibility of each f ∈ Diff(Rn).

2.2 Local Canonical Representation of Maps

By considering local properties of maps we provide a unified
treatment of mapping,

f : S⊆ Rm→ S′ ⊆ Rd , (2)

for any dimensions m,d≥ 2. In particular, as long as S is locally
a manifold of dimension n, we can always transform (2) into an
easier case of dimensions n = m = d, covered in the previous
section.

Indeed, assume that any sufficiently small neighborhood
N0 ⊂ S of rrr0 is a n-dimensional manifold. Then, by defi-
nition of a diffeomorphism, f embeds n-manifold N0 ⊂ Rm

onto n-manifold f (N0)⊂ Rd . With appropriate transition maps
φ : Rm→ Rn and ψ : Rd → Rn, we therefore have:

f̃ (rrr), [ψ◦ f ◦φ
−1](rrr) , ∀rrr ∈ N0 , (3)

where f̃ is of the form

f̃ : Rn→ Rn.

We will show in Section 3.1 that, for triangulated domains, it is
possible to pick φ and ψ so that their composition with f does
not change the amount of distortion that f causes, and therefore
we can locally substitute f by f̃ without affecting the distortion
values. To summarize, we can always transform f to a function
f̃ that locally maps Rn into Rn. We refer to such map f̃ as a
canonical form of a local diffeomorphism f at rrr0.

2.3 Common Types of Maps

Here we give examples of different types of maps that min-
imize distortion measures that have intuitive interpretations.
Such maps are well studied and provide a reference point
against which one can bench mark and compare other maps ob-
tained by a given distortion minimization scheme. Once we
introduce these distortions, we provide the counterpart list of
distortion measures that those maps minimize.

Definition 2.4 (Rigid transformation). A map f ∈ Diff(Rn) is
called a rigid transformation, or an isometric map of proper do-
main S = Dom( f ), if it preserves distances2. Compositions of
reflections, translations and rotations are rigid transformations.

2We always assume Euclidean metric.
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Definition 2.5 (Harmonic maps). A map f ∈Diff(Rn) is called
harmonic if it is a minimizer of the Dirichlet energy functional,∫

S ||d frrr||2d rrr. Harmonic maps are among the most studied maps
in applied mathematics and functional analysis.

Definition 2.6 (Conformal maps). A map f ∈ Diff(Rn) is
called conformal map of a proper domain S = Dom( f ), if for
each point rrr ∈ int(S) it scales the space uniformly in every di-
rection. This can be stated formally as

‖d frrr · û1‖2 = ‖d frrr · û2‖2 , (4)

where û1, û2 ∈ Rn denote two unit vectors. According to the
above notation, a conformal map f (rrr) is isometric in S if

∀rrr ∈ int(S) : |detd frrr|= 1 . (5)

Intuitively, conformal maps are angle-preserving maps.

Definition 2.7 (Equi-volume maps). Property (5) in Defini-
tion 2.6 by itself defines a class of equi-volume transformations.
As the terminology suggests, these maps preserve volume.

Definition 2.8 (Quasi-conformal maps). A map f ∈ Diff(Rn)
is called quasi-conformal if there exist K ∈ [1,∞) such that for
any unit vectors û1, û2 and rrr ∈ Dom( f ),

1
K

<
‖d frrr · û1‖2

‖d frrr · û2‖2
< K . (6)

Definition 2.9 (Quasi-isometry maps). A map f ∈Hom(Rn) is
called quasi-isometric if there exist a number C ∈ [1,∞) such
that for each rrr1,rrr2 ∈ Dom( f ),

1
C
‖rrr1−rrr2 ‖ ≤ ‖ f (rrr1)− f (rrr2)‖ ≤C‖rrr1−rrr2 ‖. (7)

These classes of maps are rich and well studied objects,
whose theoretical understanding is based on various areas of
mathematics and many deep mathematical insights, that com-
bine topology, algebra and more. Studying these maps in de-
tail is, of course, beyond the scope of our work. Nevertheless,
we will often invoke these definitions, whenever it will be im-
portant to make a distinction that a given optimization method
might converge to one type of functions and not to the another.
For example, while, according to the Riemann mapping theo-
rem, there exist an abundance of continuous conformal maps
in two dimensions, higher dimensional domains can be mapped
only quasi-conformally [NCQ∗18]. Mutual relations between
these classes of maps are summarized in the diagram below:

Quasi-Conformal ⊃ Conformal
⊃ Isometric
= Conformal∩Equi-Volume.

Having provided the set of maps that we are interested in,
and providing examples of the most important types of maps,
we move on to introduce distortions that measure how a map
distorts locally its domain.

2.4 Distortions

Similarly to local definitions of Hom(Rn) and Diff(Rn) we
are interested in local definition of a distortions — the resulting
framework will be applicable to maps that have irregular points,
such as non-differentiable points, and it will therefore apply for
simplicial maps as well.

Definition 2.10 (Local functional). Adopting the notation of
Section 2.1, we define a local functional as a map

D : {( f ,rrr) | f ∈ Hom(Rn), rrr ∈ Dom( f )}→ R . (8)

That is, D maps a pair ( f ,rrr) ( f ∈ Hom(Rn), rrr ∈ Dom( f )),
to a real number. For fixed f , D is a map from Dom( f )
to R, and for fixed rrr ∈ Rn, D is a functional on
{ f ∈ Hom(Rn) | r ∈ Dom( f )}.

A local functional provide us with the basis for the definition
of a distortion:

Definition 2.11 (Distortion). Distortion is a local functional
that satisfies the following properties:

1. Coordinate frame invariance. Distortion measures, used
in geometric processing, are motivated by some physical
quantities and therefore, are expected to be independent of
a specific orthogonal coordinates selected to represent the
source and target domains. Consequently, distortion mea-
sures need to be invariant to composition of f with rigid
transformations. In other words, if f ∈ Hom(S,S′), and R1
is a rigid transformation of S, while R2 is rigid a transfor-
mation of S′ (see Definition 2.4), then for each y ∈ R1 (S),

D(R2 ◦ f ◦R−1
1 ,y) =D( f ,R−1

1 (y)). (9)

2. First-order precision. Assume that f ,h ∈ Hom(Rn) are
first-order equivalent on rrr0 ∈ Dom( f ) ∩ Dom(h) in the
sense of Definition 2.3, then

D( f ,rrr0) =D(h,rrr0).

The above definitions are based on minimal requirement that
a local functional has to satisfy to define a distortion. However,
it is often desirable to impose additional regularity conditions
on a distortion. Distortion that satisfy all these additional re-
quirements are called regular.

Definition 2.12 (Regular distortion). A regular distortion D is
a distortion that in addition satisfies:

1. Normalization. Denote by IS an identity map of a set S.
Distortion D( f ,rrr) is called normalized if: (i) D( f ,rrr) ∈
[ζ,∞) for ζ ≥ 0 and any f ∈ Diff(Rn) , rrr ∈ Dom( f ); (ii)
the following conditions are met:

D
(
IDom( f ),rrr

)
= ζ, ∀rrr ∈ Dom( f ) . (10)

In particular, for all rigid transformations R on Dom( f ),

D(R,rrr) = ζ, ∀rrr ∈ Dom( f ) . (11)

Usually, the value of ζ is set to ζ = 0 or ζ = 1.
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2. Symmetry under inversions. We denote by f †rrr0 ∈
Hom(Rn) a local inversion of map f at rrr0 ∈ Dom( f ), if
there exist a neighborhood N of Dom( f ) at rrr0, such that:

rrr = [ f †rrr0
◦ f ](rrr) ,∀rrr ∈ N .

We call D symmetric, if for any f ∈Diff(Rn), rrr ∈Dom( f ),
and any local inversion f †rrr of f at rrr,

D( f ,rrr) =D
(

f †rrr , f (rrr)
)
. (12)

In other words, symmetric distortions do not distinguish be-
tween switching the role of the source and the target, i.e.,
they assign the same distortion when deforming the source
into the target or when doing the inverse (i.e., deforming
the target back into the source). For this reason, sym-
metric distortions have been used extensively in many com-
puter graphics applications [SCOGL02, SAPH04, HLS07,
RPPSH17].

3. Bottom barrier property. A sequence of maps f ( j) ∈
Diff(Rn), j = 1,2, . . ., is called a bottom barrier sequence
at rrr, if there exist vectors u1,u2 ∈ Rn and a number Q <∞
so that, for each j, f ( j) is differentiable at rrr and∥∥d f ( j)

rrr u>1
∥∥

2 < Q, lim
j→∞

∥∥d f ( j)
rrr u>2

∥∥
2 =∞ , (13)

where d f ( j)
rrr denotes the Jacobian of d f ( j) at rrr. We say that

D has the bottom barrier property if

lim
j→∞
D( f ( j),rrr) =∞ ,

for any bottom barrier sequence
{

f ( j)
}∞

j=1 at rrr.

4. Top barrier property. A sequence f ( j) ∈ Diff(Rn), j =
1,2, . . . is called a top barrier sequence at rrr if there exist
vectors u1,u2 ∈ Rn and a number ε > 0 such that, for each
j, f ( j) is differentiable at rrr and∥∥d f ( j)

rrr u>1
∥∥

2 > ε, lim
j→∞

∥∥d f ( j)
rrr u>2

∥∥
2 = 0 . (14)

We say that D has the top barrier property if

lim
j→∞
D( f ( j),rrr) =∞

for any top barrier sequence
{

f ( j)
}∞

j=1 at rrr.

5. Smoothness almost everywhere. Intuitively, we expect a
small discrepancy in D( f ,rrr) when either f or rrr are slightly
changed. To formalize this intuitive property we use the
weak derivative of D at rrr

∂D( f , ·)
∂∆

∣∣∣∣
rrr
, limsup

ε→0

D( f ,rrr+ε∆)−D( f ,rrr)
ε‖∆‖

, (15)

and define special derivative of distortion with respect to
deformation f

∂D(·,rrr)
∂A

∣∣∣∣
f
, limsup

ε→0

D( f + εA,rrr)−D( f ,rrr)
ε‖A‖

, (16)

where A is a linear map in Diff(Rn). Distortion that sat-
isfies these two properties is referred to as smooth almost
everywhere (a.e.), or to as weakly differentiable.
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Fig. 3: Distribution of distortion obtained in the flattenings of the face model
from Fig. 2. Mesh colors encode the following distortions (from the top to the
bottom): (32), (29) and (25).

2.5 Canonical Representation of Distortions

With Definition 2.11 in place, we are now in the position to
introduce canonical representations for distortions. Such rep-
resentations constitute a crucial step in analyzing distortions,
as it provides a very convenient way to characterize differ-
ent distortions. Moreover, when not written in their canoni-
cal form, the arguments of distortions are prone to contain ex-
tra degrees of freedom. This might lead to situations where
the same distortion can be represented in multiple inherently
different ways, leading to certain difficulties in their process-
ing. Canonical representation avoids the unnecessary ambigu-
ity in distortion representations and allows to treat all distor-
tions in a unified way. To obtain the canonical representations
we rely on basic linear algebra properties of Jacobian d frrr of
f ∈ Diff(Rn) at rrr ∈ Dom( f ), stated in Lemma 2.1. We char-
acterize the distortion by means of the following fundamental
theorem [RPPSH17, NSZ18]:

Theorem 2.1 (Canonical representation of distortions). Let f ∈
Diff(Rn) and rrr ∈ Dom( f ), then local functional D of the form
(8), is a distortion (according to Definition 2.11) iff it can be
expressed as a function of singular values of the Jacobian d frrr.
That is,

D( f ,rrr) = D̃
(
σ1(d frrr), . . . ,σn(d frrr)

)
(17)

for a map D̃ : Ln→ R, where Ln is the lower half-space of Rn

located below the main diagonal, i.e.,

Ln , {rrr ∈ Rn| rrr1 ≥ rrr2 ≥ . . .≥ rrrn > 0} . (18)

We call such a representation the canonical representation.

Proof. Let D be a distortion according to Definition 2.11. We
first show that D( f ,rrr0) is necessarily a function of the entries
of the Jacobian matrix of f at rrr0. By first property (9) in Defini-
tion 2.11, we can always pick appropriate rigid transformations
R1 and R2 that rotate and shift Dom( f ), Img( f ) ⊂ Rn so that
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both rrr0 ∈Dom( f ) and f (rrr0) ∈ Img( f ) are moved to the origin.
Therefore, without loss of generality we assume that

rrr0 = f (rrr0) = (0,0, . . . ,0︸ ︷︷ ︸
n

) .

Second, let N0 be a sufficiently small local neighborhood of Rn

at rrr0. Let d f0 be the Jacobian of f at 0 and denote by d f0(rrr)
the linear map

d f0(rrr) : rrr 7→ (d f0)rrr, rrr ∈ N0 .

Since f is by assumption a diffeomorphism on N0, it can be
linearly approximated by the first term in its Taylor series ex-
pansion. Hence, d f0(rrr) and f are first-order equivalent on rrr0,
(see Definition 2.3). Therefore, it follows from Definition 2.11
that

D( f ,0) =D (d f0 ,0) .

Consequently, D( f ,0) is a function of the entries of d f0, the
Jacobian matrix of f at rrr0. Finally, let d f0 = UΣV> be the
SVD of the Jacobian, so that

Σ = diag
(
σ1(d f0), . . . ,σn(d f0)

)
,

where the singular values σ1(d f0), . . . ,σn(d f0) are in the de-
scending order. Then, applying property (9) of Definition 2.11
with R1 =V, R2 =U> yields

D (d f0(rrr),0) = D̃
(
σ1(d f0), . . . ,σn(d f0)

)
,

for the corresponding function D̃ : Ln→ R.
To prove the other direction, note that by definition the lo-

cal functional D̃ : Ln→R is operating on σ1(d frrr), . . . ,σn(d frrr),
thus D̃ satisfies the first-order precision property. Indeed, if two
maps are first-order equivalent on rrr this implies that they have
the same Jacobian on rrr. Thus, it remains to show that D̃ sat-
isfies the coordinate frame invariance. The latter follows from
the fact that, for rigid transformations R1 and R2, we have:

σi
(
d(R2 ◦ f ◦R−1

1 )rrr
)
= σi

(
d fR−1

1 (rrr)

)
.

The above equality completes the proof.

Hereinafter we will drop the distinction between D̃
and D, and will occasionally write D

(
σ1(d f ), . . . ,σn(d f )

)
,

D
(
σ1, . . . ,σn

)
, or D

(
Σ
)

— they all represent the same func-
tion, defined in (17). Expressing distortion in terms of singular
values of Jacobian establishes a differential definition of dis-
tortions. The advantage of a differential definition is that it
explicitly factors in the first-order precision and coordinate in-
variance, leaving out nuisance parameters and retaining only
the essential n degrees of freedom.

Remark 2.1. It is common in geometry processing to represent
distortions by singular values [HLS07]. Theorem 2.1 is similar
to propositions presented in [RPPSH17, NSZ18]. In particular,
Rabinovich et al. [RPPSH17] have proven a variation of The-
orem 2.1 which shows that rotation-invariant geometric mea-
sures can be represented by the signed SVD, namely by using
the decomposition d frrr = U Σ̃V>, where U and V are positive

orthonormal matrices, and Σ̃ is an arbitrary diagonal matrix.
Unlike this work, our paper uses the unsigned SVD, leading
to a slightly different formulation in which the signs of detd frrr
are prescribed by a set of separate orientation constraints (for
details, see Section 5).

On the one hand, due to first order precision only the Jaco-
bian of a map matters. On the other hand, the distortion is in-
variant to rigid transformations, so for fixed rrr ∈ Rn distortions
are, in fact, functionals defined over a quotient space of linear
maps in Rn, with equivalence given by unitary transformations,
i.e., two maps

A(rrr) : rrr 7→ Ar and B(rrr) : rrr 7→ Brrr, A,B ∈ Rn×n, rrr ∈ Rn,

are equivalent if there are unitary matrices R1,R2 ∈ Rn×n such
that A = R2BR>1 . We denote the above equivalence by

A(rrr)∼ B(rrr) , (19)

or by A ∼ B, for short. Clearly, ‘∼’ is an equivalence relation
and if

[
d frrr
]
∼ is an equivalence class of d frrr with respect to ‘∼’,

then, according to (9),

D( f ,rrr) =D(h), ∀h ∈
[
d frrr
]
∼ .

Furthermore, SVD of d frrr,

d frrr =Udiag
(
σ1(d frrr), . . . ,σn(d frrr)

)
V>, (20)

suggests a convenient choice of local coordinate bases

U = [u1, . . . ,un] and V = [v1, . . . ,vn],

so that right-singular vectors (V ) of d frrr are used as basis for the
neighborhood of rrr ∈ Dom( f ) ⊂ Rn; and left-singular vectors
(U) are used as a basis of a neighborhood of f (rrr) ∈ Img( f ) ⊂
Rn in the co-domain.

Before concluding this section, we formulate the following
corollary of Theorem 2.1 that vastly simplifies mathematical
characterization of regular distortion:

Corollary 2.1. Let D be a distortion measure such that
D( f ,rrr) ∈ [ζ,∞) for ζ≥ 0 and any f ∈ Diff(Rn), rrr ∈ Dom( f ).
Then, D is a regular distortion in the sense of Defini-
tion 2.12 iff the canonical representation of D, as a function
of (σ1, . . . ,σn) ∈ Ln, satisfies:

1. Normalization property:

D
(
1,1, . . . ,1

)
= ζ . (21)

2. Symmetry property:

D(σ1, . . . ,σn) =D
(

1
σn

, . . . ,
1

σ1

)
. (22)

3. Bottom barrier property: when σ1 > ε > 0,

D(σ1, . . . ,σn)→∞ as σn→ 0 . (23)
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4. Top barrier property: when σn < Q <∞,

D(σ1, . . . ,σn)→∞ as σ1→∞ . (24)

5. Smoothness almost everywhere: D(σ1, . . . ,σn) is a weakly
differentiable map (see (15) and (16)).

Proof. If R is a rigid transformation of a proper domain S, then
by Definition 2.11 and Theorem 2.1,

D(R,rrr) =D(R−1 ◦R,rrr) =D(IS,rrr) =D
(
1, . . . ,1

)
.

Therefore, conditions (21), (11) and (10) are equivalent normal-
ization properties. The equivalence of properties (22) and (12)
follows from the fact that if σ1, . . . ,σn are singular values of a
full rank d frrr, then σ−1

n , . . . ,σ−1
1 are singular values of d f †rrr (and

visa versa). The bottom and top barrier properties of Definition
2.12 are equivalent to (23) and (24), respectively, since multi-
plying vector by unitary matrix does not change its 2-norm.

Clearly, it is much easier to define regular distortion by
means of canonical representation. In the next section, we will
utilize this representation to introduce a few examples of distor-
tions that are used in practice.

2.6 Common Distortion Measures

We proceed by providing examples of different types of dis-
tortions that are considered to be useful in practice. It should be
clear from our previous discussions (see proof of Theorem 2.1),
that properly normalized distortions D( f ,rrr) are, in fact, esti-
mates of f ’s rigidity at rrr; meaning they are a measure of how
"close” f is to a rigid transformation on Dom( f ).

As we have seen in Section 2.3, there are four major classes
of “nice" maps: length-preserving, harmonic, angle-preserving
and volume-preserving. Such maps can be related to distortion
measures which, in a sense, measure to what extend a map dif-
fers from each of the above classes.

Definition 2.13 (Harmonic distortion). The following mea-
sure, called Harmonic distortion or Dirichlet energy [HG00],
is closely related to harmonic maps; it measures by how much
a given map f ∈ Diff(Rn) stretches a small neighborhood of
rrr ∈ Dom( f ) and is defined by

DDirichlet( f ,rrr), ‖d frrr‖2
Fro =

n

∑
i=1

σ
2
i , (25)

where ‖ · ‖Fro is the Frobenius norm. This distortion, is also
sometimes referred to as smoothness energy. It is widely em-
ployed in construction of harmonic surface parameterizations
[HLS07]. Although there exist a few approaches that em-
ploy harmonic distortions for computing volumetric mappings
[WGY∗03, LGW∗07], most of the methods based on Dirich-
let energy are focused on planes and two dimensional surfaces
embedded in R3.

Definition 2.14 (Conformal distortions). A f ∈ Diff(Rn) is
conformal at rrr ∈ Dom( f ) iff

σi(d frrr) = σ j(d frrr), for 1≤ i, j ≤ n .

Therefore, conformal distortions quantify how much singular
values deviate one from the other. Most commonly, this devia-
tion is measured by:

• The MIPS2D distortion [HG00] defined on Diff(R2) as

MIPS2D( f ,rrr),
σ1

σ2
+

σ2

σ1
=

σ2
1 +σ2

2
σ1σ2

. (26)

MIPS2D distortion is referred to as “most isometric param-
eterizations”. Despite the terminology, this distortion only
estimates the deviation of σ1 from σ2, and thus is a metric
of conformal distortion (see the related discussion in Section
7). The distortion was extensively employed in early geo-
metric processing applications, since for the discrete setup
it yields convex optimization in a single vertex of a simpli-
cial complex if all other vertices in complex are kept fixed.
(We will return to this point in Section 8 after we introduce
discrete setup.)

• MIPS2D can be extended to n-dimensions as n-times the
ratio between arithmetic and geometric means of squared
singular values, yielding the MIPSnD distortion [FLG15,
NSZ18]:

MIPSnD ,
σ2

1 + · · ·+σ2
n

(σ1 · · ·σn)2/n =
trace

(
(d frrr)

>d frrr
)

|det(d frrr)|2/n , (27)

which, according to (25), has the following relation to the
Dirichlet energy

MIPSnD( f ,rrr) =
DDirichlet( f ,rrr)∣∣det(d frrr)2/n

∣∣ . (28)

• Condition number distortion, also called linear dilatation, is
a simple and natural measure for assessing the conformality
of a linear function as a ratio of its maximal and minimal
singular values. Thus, it induces the following distortion of
a smooth deformation

Dconf( f ,rrr),
σ1

σn
. (29)

Condition number (29) is extensively employed in vari-
ous studies on geometric optimization [FK02, Lip12, AL13,
KABL14, RPPSH17, SPSH∗17]. In particular, convexifica-
tion algorithms (e.g., the algorithm of [KABL14], listed in
Section 4.3) use the condition number for estimating con-
formal distortion, since Dconf(σ1, . . .σn) is a quasi-convex
function of singular values.

• Quasi-conformal (qc) dilatation is another geometric mea-
sure, employed in the classical theory of quasi-conformal
maps for estimating the maximal conformal distortion in-
duced by homeomorphic deformations. Originally, this
quantity was defined by means of an abstract measure over
curve families, called modulus [V7̈1]. The density of the
qc-dilatation can by expressed by

DK( f ,rrr), max

{
σ1 · · ·σn−1

σ
n−1
n︸ ︷︷ ︸
KI

,
σ

n−1
1

σ2 · · ·σn︸ ︷︷ ︸
KO

}
, (30)
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where KI and KO are the inner and the outer qc-dilatations.
These quantities can be interpreted as volume ratio be-
tween a small ellipsoid, obtained by mapping an infinites-
imal sphere under f , and its inscribed and circumscribed
spheres.

Quasi-conformal dilatations are often employed in mathe-
matical analysis of quasi-conformal maps; notably they are
useful for estimation of geometry-dependent bounds of con-
formal distortions [NSZ15, Car74, V7̈1].

Definition 2.15 (Volume distortions). If f ∈ Hom(Rn) is equi-
volume map in the vicinity of rrr, then

|det(d frrr)|= σ1σ2 · · ·σn = 1 .

Hence, for estimation of the volume distortion (or the area dis-
tortion in two dimensions) we employ the following measure
[DMK03, NSZ18]:

Dvol( f ,rrr), max
{
|det(d frrr)| , |det(d frrr)|−1} , (31)

where |det(d frrr)| and |det(d frrr)|−1 can be interpreted as assess-
ments of the dilatation and of the compression of a local vol-
ume, accordingly. However, (31) and other volume-based mea-
sures do not satisfy the barrier properties (23) and (24) and
therefore, can lead to non-desirable results during optimiza-
tions. For instance, the value of Dvol( f ,rrr) can be the same
for regular and nearly collapsed simplices. As a result, iterative
descent algorithms for minimizing Dvol( f ,rrr) can produce de-
generate3 simplices, leading to adverse numerical issues. Thus,
measures of volume are most often used in a combination with
other distortions for improving numerical stability of optimiza-
tion process (for an example of such measure see (36)).

Not surprising, the minimization of Dvol is linked to the
problems of finding volume-preserving mapping and to the
closely related problem of the optimal mass transportation
[SCQ∗16, ZSG∗13, LPD13]. We will return to these problems
at the end of Section 4.3.

Definition 2.16 (Isometric distortions). Isometric distortions
are direct measures of the rigidity. Since singular values of an
isometry all equal 1, these distortions assess the deviation of
(σ1, . . . ,σn) from the vector

(
1, . . . ,1

)
.

• Arguably, the most popular measure of isometric distortion,
employed in geometry processing application, is symmet-
ric Dirichlet energy [SS15, RPPSH17, CBSS17, SPSH∗17,
ZBK18, LYNF18]

DSD( f ,rrr),
n

∑
i=1

(
σ

2
i +σ

−2
i

)
= ‖d frrr‖2

Fro +‖d f−1
rrr ‖2

Fro

=DDirichlet ( f ,rrr)+DDirichlet
(

f †rrr ,rrr
)
.

(32)

Symmetric Dirichlet energy is a regular distortion (Defini-
tion 2.12, Corollary 2.1), and thus it contains the barrier term
that prevents simplex inversions in iterative optimization al-
gorithms (we will discuss this property in Section 5).

3We explain the notion of degenerate and inverted simplices in Section 3.

• As-rigid-as-possible-distortion (ARAP) is another popular
isometric distortion, employed in computer graphics for sur-
face parameterization and shape deformation [SA07]

DARAP( f ,rrr),
n

∑
i=1

(σi−1)2 . (33)

Unlike symmetric Dirichlet energy, ARAP is a non-
symmetric and non-barrier distortion, and thus cannot guar-
antee inversion-free mapping for standard algorithms in dis-
tortion minimization. For this reason, ARAP energy is often
modified, by adding an inversion barrier term4 that prevents
simplex inversions

B( f ,rrr),

{
∞ det(d frrr)≤ 0,
0 else ,

(34)

or ARAP energy is substituted by its symmetric variant
[SPSH∗17]

DSARAP( f ,rrr),
(
σ1−1

)2
+(σ−1

n −1)2 . (35)

• Fu et al. [FLG15] have introduced the family of advanced
MIPS distortions (APIMS) as variants of MIPS distortions
(26) and (27), modified for assessing isometric distortions.
AMIPS includes, among others, the following type of dis-
tortions:

DnD
AMIPS( f ,rrr), exp(MIPSnD( f ,rrr)+0.5 ·Dvol( f ,rrr)) .

(36)
Because of the exponent, the distortionDAMIPS grows faster
on barrier sequences than other isometric distortions. This
makes (36) an attractive measure for assessing geomet-
ric distortions in applications that are particularly sensi-
tive to deformations with ill-conditioned Jacobians. For in-
stance, DAMIPS is employed in recent methods for gener-
ating tetrahedral meshes to avoid poorly-shaped simplices
[HSW∗20, HZG∗18].

• In the classical geometric analysis, the rigidity is often
measured by the, so-called, Quasi-isometric (qi) dilatation,
which gives rise to a symmetric distortion that is closely re-
lated to the notation of qi-mappings, introduced in Defini-
tion 2.9 5,

Diso( f ,rrr), max{σ1 , σ
−1
n } . (37)

This measure is used in both theoretical studies [Car74] and
in practice [NSZ16, KABL15, SCOGL02], where it is often
normalized according to the relative sizes of the source and
target domains.

Fig. 3 illustrates a few distortion measures obtained by map-
ping a triangulated surface onto different planar domains.

4By distortions with barrier terms we refer to measures D( f , rrr)+B( f , rrr),
where D is a first-order distortion and B is defined by (34). As explained in
Section 8, measures D+B extend the essential properties of Definition 2.11 to
the domain R∪{∞}.

5If f is differentiable qi-mapping in neighborhood N of rrr, thenDiso( f , rrr) is
the infimum over numbers C that satisfy (7) in N.
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Fig. 4: We compute surface parameterization by minimizing the following
measures (from the top to the bottom): isometric distortion DSD, (32); con-
formal distortion Dconf, (29); the linear combination of the two distortions
Dλ = (1−λ)Dconf +λDSD, for λ = 10−3. We cut the brain hemisphere sur-
face along the selected edges (highlighted in green) into meshes with disc-like
topology, and then initialize the problem with Tutte embedding. Fixed bound-
ary parameterizations are visualized from the left to the right, as follows: we
show the ‘outer’ and the ‘inner’ sides of textured surfaces, and target meshes,
obtained after 30 iterations of BCQN solver. MinimizingDSD yields high angle
distortions around the cut, whereas minimizingDconf causes very strong shrink-
ing of edges on the outer side of the hemisphere. At the same time, constrained
parameterization with Dλ attains both low conformal and low isometric distor-
tions. Thus, compared with other two measures, minimizing Dλ causes less
visual artifacts in texture mapping.

Before we complete this section, we would like to note that a
new regular distortion can be derived by applying simple arith-
metic operations on existing regular distortions. In particular, it
is easy to show that if D1 and D2 are regular, then

Dλ = λD1+(1−λ)D2 , λ ∈ [0,1] , (38)

and exp(Dλ) are also regular. DistortionsDλ and exp(Dλ) gen-
erated this way can be quite useful: they can be used to mitigate
drawbacks of the original distortions and to craft a new distor-
tion for application-specific tasks. For example, it could be too
restrictive to compute “as-length-preserving-as-possible” maps
in cases that involve deformations of shapes with complex ge-
ometry and under hard positional constraints. As illustrated by
Fig. 4, instead of minimizing the standard isometric distortion,
it might be better to minimize a more flexible combination of
regular distortions, defined according to (38). Likewise, if D
is regular, then exp(D) is also regular, but has a ‘stronger’ bar-
rier term than D. Thus, minimizers of exp(D) are less likely
to yield simplicial maps with ill-conditioned Jacobians, so that
using exp(D) instead of D can lead to more stable numerical
computations [FLG15].

This concludes our exposition of geometric distortions. In
Section 8 we will return to distortion measures and discuss
methods for designing convex distortions.

3 Discrete Problem

We now use concepts introduced in Section 2 to reformulate
the distortion minimization problem in a more practical form,
that will serve us in the rest of the paper.

We assume that triangulated domains, considered in our pa-
per, are manifold meshes, represented by simplicial complices,
and that mappings between these domains are piecewise affine
functions, represented by simplicial maps. That is, in 2D and
3D, by “simplicial complices” we refer to triangular and tetra-
hedral meshes, and by “simplicial maps” we refer to piecewise
affine transformations of meshes.

Although our assumption implies that simplicial maps are
continuous functions, we refer to the simplicial mapping prob-
lem as to a “discrete problem” because a simplicial complex can
be represented by a finite number of entries that encode vertex
positions and describe how vertices are connected to form the
complex simplices.

Let V be a vertex set and let S be a consistently oriented
simplex set of these vertices. Denote by MMM = (S,V,yyy) a sim-
plicial complex of V and S embedded in Rm in such a way
that yyy ∈ Rm|V |×1 is the column stack of vertex coordinates in
Rm. Further, denote by dim(MMM) = n that all simplices in S are
n-dimensional6. Denote by conv(s) the closed convex hull of
simplex s ∈ S , embedded in Rm according to the coordinates
specified in yyy (source coordinates).

We assume that interiors of conv(s) are disjoint for different
simplices and we define

conv(MMM),
⋃
s∈S

conv(s) .

A simplicial map f of MMM is then a piecewise affine function

f : conv(MMM) 7→ Rd , (39)

where n ≤ d and by the “piecewise affine” we means that the
restriction fs , f |conv(s) is an affine map for each simplex s.

We assume that any simplex s ∈ S can be represented as a
(n+ 1)-tuple (v1 . . . ,vn+1) of vertrices that constitute s, where
the order of vertices reflects the simplex orientation; we write
v j ∈ s to denote that simplex s is built on these vertices. We
denote by yyyv, v ∈ V , the column stack of coordinates of v, taken
from yyy, and by PL(MMM,d) we refer to the set of all simplicial
maps from conv(MMM) to Rd , defined by (39).

Note that, depending on the context, we use both the combi-
natorial and geometric representations of simplicial mappings
— all these representations are equivalent in our case. For ex-
ample, an affine mapping fs of a simplex s = (v1, . . . ,vn+1) can
be unambiguously defined by specifying images of each vertex
vi under fs. Generally speaking, we can represent a simplicial
map f of a manifold mesh in the following equivalent ways:

1. Simplicial map f can be identified with a list of its affine
components

{
fs|s ∈ S

}
, where fs are affine maps of in-

dividual simplices that coincide on common faces of sim-
plices.

6For example, dim(MMM) = 2 if S are triangles and dim(MMM) = 3 if S are
tetrahedra.
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𝑓

Fig. 5: Illustrating equivalent representations of simplicial maps. We choose a map f of the triangle mesh MMM and show (from left to right): piecewise affine
representation f = f [xxx], defined according to (40); a discrete representation of f as a function fV = f |V that maps complex vertices V to Rd ; a combinatorial
representation of f as a correspondence map between simplices of the source and target simplicial complices, MMM and MMM′.

2. Simplicial map f can be represented as a functional of
the target vertex coordinates xxx. That is, f = f [xxx], where
xxx ∈ Rd|V |×1 is a column stack of the vertex coordinates
in the target domain and f [xxx] is a piecewise affine function
that satisfies the following equations7:

f [xxx](yyy j) = xxx j, j = 1, ..., |V | . (40)

We denote the affine component of f [xxx] on simplex s ∈ S
by

fs[xxx],
(

f [xxx]
)

s .

3. Simplicial map f can be associated with a function fV :
V → Rd that maps complex vertices to their target coordi-
nates, i.e., fV(v) = xxxv, v ∈ V .

4. Consider the image of f as a (target) simplicial complex
MMM′ = (S ′,V ′,xxx), i.e., MMM′ is the simplicial complex of sim-
plices S, vertices V and vertex coordinates xxx obtained by
mapping source coordinates yyyv, v ∈ V to Rd by f . Then,
f can be identified with the correspondence map between
the source and the target simplicial complices MMM and MMM′.
Namely, f can be represented as the mapping between the
corresponding source and target vertices, or f can be asso-
ciated with the mapping between the corresponding source
and target simplices.

Fig. 5 illustrates the above equivalent representations of a sim-
plicial map on a triangular mesh, embedded in R3.

3.1 Canonical Representation of Simplicial Maps

Since Jacobian of a local-diffeomorphism f ∈ Diff(Rn) is a
non-degenerate matrix, our underlying assumption was that, in
the continuous case, source and target domains have the same
dimensions.

However, when considering simplicial maps (39), the sim-
plex dimension n and the dimension d of the target domain are
not necessary equal.

For this reason, when practical approaches to (1) are consid-
ered, one should be aware of certain differences between the
problem with equal dimensions, m = n = d, and more general

7We identify vertices with the indices, 1, . . . , |V |, and use square brackets
in (40) to indicate that simplicial map f is a function of xxx, while round brackets
denote the evaluation of simplicial map f = f [xxx] at a given point in Rm.

scenarios. Following these considerations, we define the source
and target codimensions

codim(MMM), m−dim(MMM); (41)

codim(MMM′), d−dim(MMM′) . (42)

and, based on these definitions, we consider the following three
major scenarios:

codim(MMM) = 0, codim(MMM′) = 0; (43)
codim(MMM)> 0, codim(MMM′) = 0; (44)
codim(MMM)≥ 0, codim(MMM′)> 0 . (45)

To treat scenarios (43)-(45) in a unified manner, we consider
a local presentation of simplicial map (see Fig. 6). This rep-
resentation removes the extra degrees of freedom, presented in
(44) and (45), and it enables a smooth transition between the
discrete and continuous settings, presented in Section 2. In par-
ticular, if codimensions of simplicial complices in (41) and (42)
are non-zero, then we define the distortion energy of a simpli-
cial map f = f [xxx] by considering “an equivalent map” between
n-dimensional simplicial complices in Rn. For obtaining an
equivalent canonical map, we project f ’s components onto the
n-dimensional subspace, without distorting shapes of the source
and target simplices.

Assume that f is a simplicial map, defined in (39), and that
n ≤ d, n ≤ m. Denote by s′ the target simplex of s ∈ S under
f and let φs and ψs be rigid transformations of Rm and Rn that
map conv(s) and conv(s′) into hyperplanes Rn×{0}m−n and
Rn×{0}d−n, respectively. To simplify our notations, we as-
sume w.l.o.g. that these hyperplanes are equal to Rn. If D is a
first order distortion of deformations Diff(Rn), then, we define

D( fs),D
(
[ f̃s]∼,rrr

)
, s ∈ S, rrr ∈ conv(s) ,

where [·]∼ is an equivalence class of deformations in Rn, de-
fined by (19), and f̃s is the transition map

f̃s , ψs ◦ fs ◦φ
−1
s . (46)

As illustrated in Fig. 6d, map f̃s satisfies the following diagram:

conv(s)⊂ Rm conv(s′)⊂ Rd

Rn Rn

fs

φs ψs

f̃s

.
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Fig. 6: Showing examples of different types of simplicial mapping and illustrating how distortions under these maps are measured for each simplex. Scenario (43)
of mapping between simplicial complices with zero codimensions in 2D and 3D are depicted in (a) and (b), respectively. An example of scenario (44) is illustrated
in (c), where we show a surface flattening and the resulting texture mapping. The most general scenario (45) is illustrated in (d) by showing a map between two
triangle meshes, embedded in R3 (surface matching problem).

We refer to (46) as to the (local) canonical representation of
a simplicial map f = f [xxx]. We use canonical representation of
f to define distortion energy of D,

ED ( f [xxx]), ∑
s∈S

w(s)D(
[

f̃s]∼) , (47)

where w(s) are simplex weights, most frequently chosen to be
the simplex volume Vol(s). We always compute distortions of
canonical representations of simplicial maps. Obviously, sub-
stituting components of a map f ∈ PL(MMM,d) with its canonical
representations does not change distortion values.

Noteworthy is the fact that the energy of (47) can be equiv-
alently represented by other expressions, e.g., using a vertex-
based weighted sum of distortion densities [NSZ18, CR18].
However, vertex weights and other related representations are
rarely used in practical applications. In this paper, we follow a
more common definition (47) which is based on the linear finite
element formulation. By using these formulations in the dis-
crete case, we can employ a more general optimization frame-
work.

4 Minimizing Distortions of Simplicial Maps

Although we have provided a unified method for comput-
ing distortion energies in scenarios (43)-(45), these scenarios
require a different treatment for minimizing distortions.

To illustrate fundamental differences between distortion opti-
mization techniques, employed in scenarios (43) and (45), con-

sider a gradient descent (GD) optimization of a distortion en-
ergy (47). If codim(MMM′) = 0, then the GD update of target ver-
tices, xxx← [ xxx−∆t∇xxxE, is well defined, since the displacement
vector ∆xxx and the target simplicial complex MMM′ belong to the
same n-dimension plane, Rn = Rd .

In contrast to the case codim(MMM′) = 0, if codim(MMM′) > 0,
then there is a certain ambiguity in the GD optimization of xxx,
since it should be specified whether the target vertex coordi-
nates xxx j, j = 1, . . . , |V |, are free to move in Rd (free-form de-
formations), or xxx j are constrained to be contained in a given
n-dimensional submanifold T n ⊂ Rd .

In practice, scenario (45) with free-form deformations is
rarely processed by optimizing directly distortions on MMM. This
is because distortion energy (47) by itself cannot control the
shape of a target domain, since, in this case, there are extra
degrees of freedom to rotate separately simplex images in Rd

without changing distortions. See Fig. 7 for an example of
those adverse effects that appear in a free-form deformation of
a triangular mesh.

For instance, computing optimal mapping between two tri-
angular meshes, embedded in R3, is a problem of type (45) in
which xxx is constrained to be contained in a given 2-manifold.
This problem has various applications in computer vision and
imaging. In particular, the existing approaches to that prob-
lem are employed for such tasks as shape matching and surface
registration. Often, shape matching algorithms combine both
distortion minimization methods [APL14, ESBC19, SBCK19]
and other geometry processing techniques such as: computa-
tions of geodesic distances [Set99], functional maps [EBC17,
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Fig. 7: An example of GD optimization of isometric distortion induced by mapping of a 2-dimensional simplicial complex from R2 (left) to R3 (right). We initialize
the problem by mapping the source mesh onto a sphere (target) and execute the GD optimization without using positional constraints on vertex coordinates.

Fig. 8: An optimal mapping of a volumetric domain DDD (left) that induces a low
distortion mapping of a surface mesh MMM (right), contained inside the volume.
The volumetric mapping fDDD was computed by minimizing isometric distortion
over a tetrahedral mesh. The triangulated surface MMM was represented as a volu-
metric texture inside DDD. Then, vertices of MMM were mapped by fDDD according to
their barycentric coordinates.

OBCS∗12] and etc.
If codim(MMM′) > 0, then a practical approach to minimizing

distortions on MMM, with unconstrained coordinates xxx ∈ Rd|V |×1,
is to consider simplicial maps of d-dimensional complex DDD con-
taining the original n-dimensional complex MMM. Then, a solution
of problem (1) on DDD is an optimal simplicial map

f ∗DDD : conv(DDD)→ Rd ,

of type (43) or (44), and the restriction of f ∗DDD to conv(MMM) in-
duces a low distortion simplicial map f ∗MMM of the complex MMM (see
the illustration in Fig. 8). In particular, if v ∈ V is contained in
a d-dimensional simplex c of DDD, then the image f ∗MMM(v) can be
computed by using barycentric coordinates of v in c.

Next, we discuss how to compute Jacobian matrices of sim-
plicial maps by using barycentric coordinates and other related
quantities. Note that, unless stated otherwise, we further as-
sume that codim(MMM′) = 0, i.e., d = n.

4.1 Jacobian Computation

On the one hand, the problem of minimizing (47), in all prac-
tical situations, is stated in terms of vector xxx and a simplicial
complex MMM. On the other hand, the energy, through distortion

density, depends on the Jacobians d fs, s∈ S . Therefore, from a
practical viewpoint, it is important to develop concise analytical
expression for

d fs : Rn|V |→ Rn×n,

in terms of the known quantities8 xxx and S. First, we consider
one-dimensional maps PL(MMM,1). This space has a natural basis
of Lagrange basis functions {hv ∈ PL(MMM,1) : v∈V}, also called
hat functions, where each hv satisfies the following system

hv(yyyu) = δvu, v,u ∈ V, (48)

∑
v∈s

hv(rrr) = 1, s ∈ S, rrr ∈ conv(s) . (49)

Representing simplicial map f [xxx] ∈ PL(MMM,n) with respect to
basis functions hv yields

fs(rrr) =
n+1

∑
j=1

hv j(rrr)xxxv j , s ∈ S, rrr ∈ conv(s) . (50)

The close form solution of (49) and (48) has a simple geometric
interpretation in R2 and R3. Let s = (v1, . . . ,vn+1) ∈ S, rrr ∈
conv(s) and denote by µ j the face of s located opposite to vertex
v j, and let ηηη j be a vector normal to µ j whose length equals
‖ηηη j ‖= Area(µ j) (see Figs. 9 and 10). Then, we can express n
basis functions as

hv j(rrr) =
(rrr−yyyvn+1

) ·ηηη j

nVol(s)
, j = 1, . . . ,n , (51)

and, for attaining a convex combination in (49), the last basis
function is set to

hvn+1(rrr), 1−
(
hv1(rrr) + · · ·+hvn(rrr)

)
.

In fact,
(
hv1(rrr), . . . ,hvn+1(rrr)

)
are barycentric coordinates of

point rrr in s. These coordinates are widely employed in geomet-
ric computer vision for interpolating discrete quantities, sam-
pled at vertices. By differentiating (50) with respect to rrr, we
obtain the Jacobian d fs

d fs =
n+1

∑
j=1

∂hv j

∂rrr
xxxv j . (52)

8Here we use the shorthand notation Rn|V | = Rn|V |×1.
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Fig. 9: Illustration of a hat function (51), defined over a 2D simplicial complex,
embedded in R3.

Gradients ∂hv/∂rrr are constant for each v ∈ s ∈ S because
hv|conv(s) are affine functions, by the definition. Hence, d fs is
constant in rrr ∈ conv(s) and the correspondence between the
target coordinates and Jacobian of fs forms a linear operator
Rn|V |→ Rn×n, denoted by

∂s(xxx), d fs[xxx] ,s ∈ S .

The details of these computations are presented in Appendix A.

4.2 Problem Formulation

We are now in the position to provide a formal definition of
the discrete problem, based on definitions of simplicial maps
and evaluations of their Jacobians. Let MMM = (S,V,yyy) be a sim-
plicial complex, we then consider the following problem of op-
timizing distortions in the discrete settings:

f ∗ = argmin
f∈PL(MMM,n)

E( f ) ; (53)

s. t. det(d fs)> 0, ∀s ∈ S ; (54)

fV(ai) = xxx0
ai
, i = 1, . . . ,k , (55)

where (53) is the optimization problem of distortion energy, de-
fined according to (47); (54) is the orientation constraints on
maps PL(MMM,n) and (55) are discrete positional constraints de-
fined on a set of vertices (anchor points) a1, . . . ,ak which coor-
dinates are fixed to given positions xxx0

a1
, . . . ,xxx0

ak
.

It is more convenient to represent simplicial maps by (40)
and to formulate constraints via a system of linear equations
because it reduces (53), defined over PL(MMM,n), to a more sim-
ple optimization problem in Rn|V |:

xxx∗ = argmin
xxx∈Rn|V |

E( f [xxx]) ; (56)

s. t. det(d fs[xxx])> 0, ∀s ∈ S ; (57)

Axxx = bbb, A ∈ Rk×n|V | , (58)

where (58) is the generalization of (55) to linear positional con-
straints and the objective energy is the real function E = E(xxx) :
Rn|V | 7→ R.

We proceed to review various methods for solving the distor-
tion energy equation (56).

𝜼𝑗

𝑣𝑗

𝜼𝑗

𝑣𝑗
f

𝒙𝑣𝒋

𝒙𝑣𝒋

Fig. 10: Examples of simplicial mapping from R3 to R2 (bottom) and from
R3 to R3 (top). The latter example demonstrates a volumetric parameterization
of the segment of a CT scan (hippocampal region) [NCQ∗18]. Highlighted
simplices illustrate a piecewise affine construction, introduced in (51).

4.3 Distortion Optimization Methods

In practice, solutions of (56) are orientation-preserving maps
of triangular and tetrahedral meshes, embedded in R2 and R3.
Various iterative algorithms and other related techniques are
used for constructing optimal deformations of triangular and
tetrahedral meshes via minimization of geometric energies.

The relevant methods can be qualitatively divided into the
four major categories: (i) linear methods which, in general,
are the earliest and fastest methods; (ii) convexification meth-
ods; (iii) non-linear optimization techniques; (iv) indirect ap-
proaches, intended for a limited subset of objective energies
with a well studied structure.

Linear methods. These methods compute simplicial maps
by solving a linear system

Lxxx = bbb , (59)

where the coordinates xxxv for each vertex v ∈ V are expressed
by a weighted average of its neighbors. The matrix L is often
considered as a discrete approximation of the Laplace-Beltrami
operator. Consequently, solutions of (59), called discrete har-
monic maps, are minimizers of a piecewise Dirichlet energy.

Among others, the most common weighting schemes, em-
ployed in (59) for triangular meshes, are uniform, cotangent
weights and weights derived from the mean-value coordinates
[FH05]. Whenever these weights satisfy Luv > 0 for any neigh-
boring vertices u 6= v, and coordinates of boundary vertices in
bbb form a convex polygon, then solving (59) yields an injective
mapping f [xxx] of a source mesh into the plane [F∗97]9. Further-
more, certain methods for injective harmonic mapping can be
extended from target planar domains to more general domains
on surfaces [AL15, AL16, AKL17].

If L is a cotangent weighted Laplacian matrix and xxx is the so-
lution of (59) with respect to L, then xxx>Lxxx is the discrete Dirich-
let energy induced by (25). Moreover, according to [FH05], a

9See [F∗97] for additional constraints on the mesh connectivity.
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simplicial map f [xxx], xxx = L−1bbb, attains conformality if the den-
sity of the energy of DDirichlet, per a unit area, reaches its global
minimum.

Levy et al. [LPRM02] simplify the non-linear MIPS opti-
mization by introducing a linear approach for computing least-
square conformal maps. More recent study of [BDS∗12] uni-
fies major least squares geometry processing techniques into
a framework of shape projection operators. The recent study
of [CLLGL20] computes conformal parameterization by parti-
tioning surface into smaller subdomains and computing linear
conformal flattening of each subdomain.

Although shape operators and the related linear techniques
have a low computational cost, these methods are limited in
their application to a narrow set of geometric measures and
support only certain positional constraints. This is in contrast
to resent studies in non-linear optimization and convexification
methods, aimed at minimizing arbitrary distortions expressed
by Jacobian singular values.

Convexification methods. In general, these are iterative
techniques that approximate problems similar to (53) by a se-
quence of nested convex problems, for which convex optimiza-
tion tools can be applied. These include: projecting simplicial
mappings onto the space of Bounded Distortion (BD) maps of
triangular [Lip12] and tetrahedral [AL13] meshes; Large Scale
Bounded Distortion (LBD) maps [KABL15]; controlling singu-
lar values via Semi-Definite Programming (SDP) [KABL14].

The space of K-bounded distortion mappings is defined as
the set of simplicial maps f ∈ PL(MMM,n) satisfying the inversion-
free constraints (54) and such that the conformal distortion (29)
of linear components of each f is bounded by a given number
K > 1,

Dconf(d fs)≤ K, ∀s ∈ S .

The method of [Lip12] for bounded distortion mapping of tri-
angular meshes is based on representation of affine transforma-
tions using complex numbers and on the following formula for
singular values of 2×2 Jacobian matrices d fs:

σ1(d fs) = |αs|+ |βs|; (60)

σ2(d fs) =
∣∣|αs|− |βs|

∣∣ , (61)

where αs,βs ∈ C are complex representations of the similar-
ity and anti-similarity components of d fs, s ∈ S . As shown in
[Lip12], the maximal convex subset of K-bounded distortion
mappings in 2D can be characterized by a system of simple in-
equalities, expressed in terms of K, |αs| and |βs|, for s ∈ S .

The subsequent work of [AL13] extends this strategy to tetra-
hedral meshes, by solving a quadratic problem of projecting
a given simplicial map onto the BD space. This projection
technique can be further improved by employing KKT linear
systems for a more efficient formulation of optimization con-
straints [KABL15].

Convexification methods can incorporate non-locally injec-
tive initializations. In particular, the BD and LBD methods are
aimed primary at repairing non-positively oriented maps and re-
strain their distortions within a finite range, whereas SDP, and
other related interior point solvers, are considered to be not sen-
sitive to the quality of an initial map.

Similarly to other optimization techniques, convexification
methods express objective measures in terms of the Jacobian
singular values. However, unlike more general optimization
algorithms, such as gradient descent or quasi-Newton solvers,
convex optimization tools, employed in convexification meth-
ods, impose much tougher constraints on the optimization pro-
cess.

Next, we discuss a more generic optimization approaches,
referred as to methods in non-linear geometric optimization.
While convexification solvers employ convex approximation
both for the objective function E( f ) and for the space of objec-
tive variables f ∈ PL(MMM,n), non-linear methods approximate
energy (47), alone, and thereby these methods can be applied in
more general scenarios.

Non-linear geometric optimization. A typical non-linear
geometric solver updates the mapping f [xxxi] at the ith iteration
as follows

xxxi+1 = xxxi +∆t idddi (∇xxxE,Hxxxi) , (62)

where dddi is the field of the descending direction computed as
a function of the distortion gradient ∇xxxE = ∇xxxE(xxxi) and the
Hessian Hxxxi . Here we considered iterative solvers that begin
with an initialization f 0 = f [xxx0] and recompute (62) for each
iteration10 i.

The exact amount of ∆t i by which xxxi is modified along the
descent fields is computed, in general, by inexact line search;
e.g., using the Armijo back-tracking method.

Based on methods of computing descent direction, geometric
solvers are divided into the first and second order techniques.

The gradient descent (GD) is the basic first order method in
which vertex coordinates are updated along the negative gradi-
ent direction, i.e.,

ddd =−∇xxxE .

It is easy to implement GD for any SVD-based distortion D be-
cause the only steps needed for GD update are: the computation
of ∇xxxE and the line search step. Moreover, for each v ∈ V the
gradient component (∇xxxE)v depends only on the neighboring
vertices of v. [See details on gradient computation in Appendix
A.2.] Therefore, it is easy to apply GD, locally, to minimize en-
ergy (47) over a small subset of simplices. Local GD methods,
in which only a fraction of vertices are updated at each itera-
tion, are called block gradient descent (BGD). Due to a simple
implementation and robustness, GD and BGD algorithms are
widely employed in geometry processing; these methods were
popular in early applications [HG00] and they also are used in
recent studies for inducing locally injective simplicial mappings
[FLG15, NSZ18, NZZ20]. Although GD works well over small
blocks of vertices, it converges slowly when applied to the co-
ordinates of all vertices in (62).

To speed up distortion optimization, one should employ more
general first order solvers in which ddd is the solution of a sparse
linear system

H̃xxxi ddd =−∇xxxE(xxxi), (63)

10It is often clear, from the context, at what iteration vertex coordinates and
descent fields are computed. Thereby, to make our presentation more simple,
we often drop the superscript indices, used in (62).
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Fig. 11: Isometric parameterization of a Hilbert fitting curve (source mesh) with different optimization methods. The surface is flattened by minimizing symmetric
Dirichlet energy (32), initializing the process by the Tutte embedding of the source mesh into a disc. We depict parameterization results, obtained at different
iterations, and show the final texture mapping at the right side.

where H̃ is the Hessian of a quadratic approximation of the orig-
inal energy E in the vicinity of xxxi (quadratic proxy):

Ẽ(xxx) = E(xxxi)+
(
xxx− xxxi)T ∇xxxE(xxxi)+

1
2
(
xxx− xxxi)T

H̃xxxi
(
xxx− xxxi) .

(64)
For example, in Sobolev gradient descent (SGD), and in the
closely-related Accelerated Quadratic Proxy (AQP) [KGL16],
H̃ is a cotangent-weighed mesh Laplacian L, computed over
source coordinates yyy. These methods are designed for min-
imizing isometric distortions. Further, the method of Scal-
able Locally Injective Mappings (SLIM) [RPPSH17] extends
SGD approach to general distortions by setting H̃ to be a
reweighed Laplacian. In the isometry-aware precondition
method [CBSS17] (AKVF), H̃ is a quadratic form of the Killing
energy of vector fields, defined over triangle meshes.

Similarly, second order methods compute H̃ as a function of
both ∇E and ∇2E. Note that H̃ should be a positive semidef-
inite matrix to guarantee that ddd, computed in (63), is a descent
direction of E(xxx). Therefore, second order methods cannot em-
ploy the original Hessian H̃ =∇2E because, in most cases, en-
ergy E is non-convex in xxx (see Section 8). Instead, second order
methods use second order derivatives of E(xxx) to approximate
the Hessian. For example, H̃ = diag

(
∇2

xxxE
)

in Jacobi gradient
descent [WY16]; ∇2E is projected into a positive semidefinite
cone [LKK∗18, LBK16, TSIF05] in projected Newton meth-
ods (PN). In 2D, a positive semidefinite approximation of ∇2E
can be computed by using complex analysis [GSC18, CW17]
or via the Composite Majorization (CM) method [SPSH∗17],
in which H̃ is derived from the analytic expression of singular
values of matrices in R2×2 (60) and (61).

Quasi-Newton methods lay in between first and second or-
der solvers. Similarly to second order solvers, quasi-Newton
methods are based on a Newton update step. However, in-

stead of directly computing second order derivatives, quasi-
Newton methods use gradients and vertex positions from previ-
ous iterations to iteratively update approximate Hessians, H̃ =
H̃
(
∇E i,∇E i−1, . . . ,xxxi,xxxi−1, . . .

)
. Due to their robustness and

relatively low computational cost, these methods are widely
employed in geometry processing and imaging. For example,
Smith et al. [SS15] had adopted the classical L-BGFS algo-
rithm for computing globally bijective parameterization. This
method is enhanced in the sequel by the Blended Cured Quasi-
Newton (BCQN) [ZBK18] strategy of a gradual blending be-
tween AQP [KGL16] and L-BFGS. BCQN solver benefits both
from the super-linear convergence of L-BFGS in the vicinity of
a local minimum and from the rapid progress of AQP at the first
iterations.

In Fig. 11, we demonstrate a number of non-linear geomet-
ric solvers, employed for parameterization of a triangulated sur-
face. As shown by the figure, iterations of second order meth-
ods result in a more rapid progress. However, computing de-
scent direction is more costly in second order solvers, since the
Hessian approximation in these methods involves computations
of both the first and second order energy derivatives.

Indirect approaches. So far, distortion optimization meth-
ods, presented in this section, have the following common prop-
erty: these approaches compute optimal simplicial maps in
which the measure of map optimality is a functions of the vertex
coordinates xxx. However, in many applications, simplicial maps
are represented implicitly. For example, simplicial maps can be
represented implicitly as a solution of some equation, as a re-
alization of a discrete metric and etc. In these cases, the final
optimal map is reconstructed from its implicit presentation and
the measure of the map’s optimality is a property of the implicit
form, used to define the map. We refer to methods, based on
implicit representations, as to indirect approaches.
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Although presenting all indirect approaches is beyond the
scope of this paper, we list some indirect methods that are
closely related to the distortion minimization problem. Some
of these methods are discussed in more details in Section 7.

For example, discrete quasi-conformal maps can be con-
structed on triangulated surfaces by solving equations of Bel-
trami coefficients [ZLYG09, CLL15]. A discrete approxima-
tion of conformal maps can be computed in a metric domain,
e.g., discrete Ricci flow obtains a user-specified distribution
of Gaussian curvatures at vertices and it achieves the targeted
metric conformal to the original metric. Some indirect ap-
proaches represent triangulated surfaces by curvature values or
by unit normals, defined on vertices. These methods compute
implicit representations of optimal maps by modifying these
values on vertices, e.g., by performing the conformal curvature
flow [CPS13], or by computing the unit normal flow [ZSL∗20].

Another important class of indirect approaches presents
discrete methods for computing Optimal Mass Transporta-
tion (OMT). In general, methods in OMT seek to find a
volume/area-preserving map between two spaces that mini-
mizes a specific transportation cost. There are multiple equiv-
alent ways to define such problems on meshes, including
the classical Monge-Kantorovich formulation, the Wasserstein
metric formulation and the Brenier formulation for OMT in
the semi-discrete case (see the survey of [Sol18]). Although
transportation cost functions can be formulated in a different
manner than distortion measures, there exist many interrelated
methods for OMT and distortion minimization. For example,
[ZSG∗13] introduced an algorithm for area-preserving flatten-
ing of triangle meshes. First, the algorithm is initialized with
conformal map f 0, it then minimizes area distortions by solv-
ing an OMT problem in which conformal factors of f 0 define
the transportation cost. Likewise, OMT and conformal map-
pings are used in many shape analysis applications for com-
paring multiple objects and detecting geometric change in an
object. For instance, the dissimilarity measure of two meshes
MMM and MMM′ with disc topology (or two genus-zero meshes) can
be defined as the minimal transportation cost induced over map-
pings {( f ′)−1 ◦ g ◦ f}, where f and f ′ are conformal parame-
terizations of MMM and MMM′ into a disc (sphere), and g is a Möbius
transformation [BLC∗11, LPD13].

Worth mentioning, minimizing variants of volume distor-
tions yields a more general class of density-equalizing maps.
Instead of preserving the volume, density-equalizing maps
preserve a given volume density. Such variants of volume-
preserving maps are used in classical tasks of data visualization
[GN04, DBN06]. For instance, Choi and Rycroft [CR18] intro-
duced a method for density-equalizing mapping of triangular
meshes. The method operates by flattening simply-connected
meshes in a way that inflates or shrinks the target mesh tri-
angles according to the specified area densities. This method
starts with curvature-based flattening of the mesh boundary,
then it uses a diffusion-based algorithm to minimize area den-
sities over vertices.

4.4 Acceleration Techniques

There is a number of techniques aimed at accelerating
existing algorithms for distortion minimization. For exam-
ple, Accelerated Quadratic Proxy [KGL16] (AQP) employs a
Nesterov-like acceleration to boost the vertex update step (62).
First, AQP computes xxxi+1 according to (62), and then it sets xxx
to be an affine combination of xxxi+1 and the target coordinates
obtained at the previous iteration. That is, xxx = (1+t)xxxi+1− t xxxi,
for a small t ∈ (0,1).

Instead of using the source mesh as a reference, Progressive
Parametrization (PP) [LYNF18] defines an intermediate (pro-
gressive) mesh that induces low isometric distortion and that
is as-close-as-possible to the given source domain. PP accel-
erates non-linear solvers by iteratively generating progressive
meshes and by decomposing source-to-target map into inter-
mediate mappings with bounded singular values.

Anderson Acceleration (AA) [PDZ∗18, ZPOD19, OPY∗20]
is another approach to speeding up optimization, based on a
well-established technique for fixed-point solvers. Methods of
AA are designed for alternating local-global optimization, such
as [LX∗08, BDS∗12, BML∗14]. A local-global algorithm alter-
nates between the two steps: (i) the local step, in which energy
E is minimized with respect to auxiliary variables, while the
target coordinates xxx are fixed; (ii) the global step, in which E
is minimized with respect to xxx. The key idea of AA is to speed
up the global step by modifying auxiliary variables, obtained at
the local step. For example, AA can be used to improve existing
methods for BD mapping [SFL19].

Another class of popular acceleration techniques is based on
hierarchical mappings between meshes of decreasing resolu-
tion. For example, ABF++ algorithm [SLMB05] of conformal
flattening performs a sequence of edge collapse operations for
decimating the original mesh MMM. This method computes a low
resolution parameterization f ′ of decimated mesh MMM′, and then
it derives f ′ for the original mesh by applying a series of vertex
split operations. In certain scenarios, optimization (56) can be
initialized directly with a solution ( f ′)∗ of the same problem,
computed in a low resolution. As shown in [NZZ20, NZ19],
( f ′)∗ can be transformed to an inversion-free initialization of
MMM by, first, mapping MMM into a disc, and then deforming that
disc into the shape of Img

(
( f ′)∗

)
.

5 Distortion Optimization Constraints

This section is dedicated to a detailed analysis of the opti-
mization constraints (58) and (57). We also discuss existing
methods for locally and globally injective mapping, and relate
these methods to orientation constraints and to distortion mini-
mization under fixed boundary constraints.

5.1 Positional Constraints

Positional constraints (58) constitutes an integral part of the
linear methods. Moreover, computing unconstrained harmonic
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maps, in most linear methods, such as [Tut63] or [Flo03], yields
a trivial solution that contracts the entire target domain into a
single point.

In contrast to linear techniques, convexification and non-
linear optimization methods can be used without positional con-
straints. For example, surface parameterization with a free
boundary can be computed as a solution of (56) without po-
sitional constraints (Figs. 11 and 2 (right)).

Positional constraints (58) can be integrated into first and sec-
ond order non-linear solvers via the constrained minimization
of the quadratic proxy (64). In particular, if H̃xxx is the Hessian
approximation at xxx, then the constrained descent direction is
computed via the following KKT system:(

H̃xxx A>

A 0

)(
ddd
λ

)
=

(
−∇Exxx

bbb

)
, (65)

where (A,bbb) are linear constraints (58) and λ is a KKT multi-
plier vector.

It is very common to solve (53) with Dirichlet constraints,
that is, with constraints (58), reduced to a set of fixed anchors,
xxxai = xxx0

ai
, ai ∈ Vfixed ⊂ V (see Fig. 18). In this scenario, sys-

tem (65) is reduced to solving descent direction equation (63)
over the set of free vertices V \Vfixed. Particularly, in gradient
based methods, such as GD and BGD, the Dirichlet constraints
can be implemented by modifying only free vertices, while con-
strained vertices are fixed at their prescribed positions.

5.2 Orientation Constraints

Unlike the positional constraints, orientation constraints are
non-linear and thus cannot be processed directly by (65). For
satisfying (57), one should be able to either repair inverted sim-
plices, or to start with an inversion-free map and preserve its
positive orientation along the entire optimization.

In general, the process of repairing an inverted simplex s by
(62), has to collapse s before unfolding it to a positive orien-
tation in the target domain. However, most popular distortion
energies are regular distortions that satisfy the barrier properties
from Definition 2.12. These distortions explode on degenerate
target simplices11, and thus, optimization of these distortions
prevents orientation flips, keeping elements at their initial ori-
entation. For a non-regular distortion D, orientation flips can
be prevented by adding a barrier term (34) to D.

As a result, the vast majority of existing geometric optimiza-
tion algorithms, process orientation constraints, implicitly, by
requiring, first, a positively-oriented initialization f 0 = f [xxx0]
and, then, preserving initial simplex orientation at each subse-
quent iteration.

The strategies, proposed to keep f satisfying (57), include:
designing distortions with flip barriers [SS15, FLG15] (i.e.,
using regular distortion or adding a barrier term), inversion-
aware line search [SS15], the barrier-aware line search filtering
[ZBK18], employment of scaffold meshes [LKK∗18, JSP17]
and their variants [SYLF20]. In addition to these methods,

11A n-dimensional simplex is degenerate if its n-volume is zero.

one can employ ray-tracing algorithms [SS15, NSZ18] to pre-
vent target simplices from being inverted during the line search
stage. In certain cases, an inversion-free initialization xxx0 of
(56) can be computed by linear methods. For example, uncon-
strained parameterization of triangle meshes with disc-topology
can be initialized by mapping the source mesh into convex pla-
nar domain via the classical Tutte embedding [Tut63] or by us-
ing linear conformal maps [Flo03]. Although these maps attain
a positive orientation, detd f 0

s > 0, and low conformal distor-
tions, they produce highly distorted elements with respect to
other measures, such as isometric distortions. Computing fea-
sible initialization f 0 in more general scenarios is much more
challenging. To the best of our knowledge, there is no robust so-
lution of providing an inversion-free initialization for problem
(56) in a general scenario.

In a view of the above limitations, a number of strategies
have been proposed for generalizing existing methods of injec-
tive mappings. In particular, a number of approaches have been
proposed to extend Tutte’s embedding to non-convex domains.

The method of [XCGL11] starts with uniformly weighted
Laplacian and iteratively modifies it using cotangent weights,
computed with respect to the solution of (59) on the previous
step. This approach can be considered as hybrid linear algo-
rithm, aimed at repairing inverted triangles by means of mini-
mizing the deviation between the target unsigned area

Area
∣∣ f ∣∣, ∑

s∈S

∣∣Area
(

fs(s)
)∣∣

and target signed area

Area( f ), ∑
s∈S

Area
(

fs(s)
)
,

where Area
(

fs(s)
)

denotes the signed area of the image of sim-
plex s under the affine map fs.

Assume that we seek to find an orientation-preserving map
under a properly set boundary constraints, i.e., under the Dirich-
let constraints (55), f 0

V(ai) = xxx0
ai

, where ai are indices of bound-
ary vertices and f 0

V is an inversion-free map. In such a case, the
method of [XCGL11] can be simplified to yield the following
minimization

argmin
xxx

Area
∣∣ f [xxx]∣∣. (66)

Problem (66) is applicable both to triangular and tetrahe-
dral meshes. Clearly, in the latter case, Area

∣∣ f [xxx]∣∣ denotes
the total unsigned volume of target tetrahedrons under f .

outer
�lips

inner
�lips

If xxx∗ is a global minimizer of
(66), then Area | f ∗|, induced by
f ∗ = f [xxx∗], equals to the area
(volume) contained in the mesh
boundary ∂xxx∗. In such a
case, detd fs[xxx∗]≥ 0 for all s ∈ S,
since, as illustrated by the inset,
any inverted simplex s with non-
zero volume, either intersects its
positively oriented neighbors (in-
ner flips), or the target shape of s
goes beyond the mesh boundary (outer flips). In both sce-
narios, Area | f ∗| exceeds Area

(
∂xxx∗
)
, contradicting the global
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optimally of xxx∗. However, a simplicial map f ∗ can produce
collapsed simplices and still be a global minimizer of the total
unsigned volume. This limitation and the related issue of van-
ishing gradients∇xxx Area | f | are overcome in the recent work of
[DAZ∗] by lifting simplices into the higher dimensional space
R2n. The sum of unsigned areas of lifted simplices is called the
Total Lifted Content (TLC). As proved by [DAZ∗], minimizers
of TLC satisfy constraints (57) and thus induce injective map-
pings of triangular and tetrahedral meshes into domains with
non-overlapping boundaries (see Section 5.3). Nevertheless,
similar to algorithms in harmonic mappings, TLC requires a
proper fixation of all boundary vertices. Minimizing TLC with
more general positional constraints, such as fixations of a small
number of anchor points (Fig. 6a), can cause inversions and un-
desirable shrinking of mesh elements. Hence, in such tasks as
shape deformation and parameterization with non-fixed bound-
aries, one should use other approaches to computing inversion-
free initializations. Those include a number of linear and non-
linear methods, presented below.

Sawhney and Crane [SC18] have proposed a boundary First
Flattering (BFF) as a linear method for conformal flattening of
triangular meshes that supports direct manipulation of lengths
or angles of boundary edges. Although theoretically BFF is
guaranteed to produce inversion-free flattening only onto con-
vex domains, in practice it is capable of producing positively
oriented maps onto simple non-convex domains.

If the algorithm, used to initialize (56), fails to produce an
inversion-free map, then the existing inverted simplices can
be repaired via a limited number of convexification methods,
such as BD [Lip12, AL13] and LBD [KABL15]. These meth-
ods project a given map f onto the nearest positively-oriented
simplicial map with bounded conformal distortions. However,
there are no guaranties to keep constraints (55) under these
projections. Setting a suitable lower bound K of conformal
distortion is another common drawback of algorithms in BD
mapping. For instance, the K-bounded distortion space can be
empty if the value of K is too low. Likewise, setting K too high
may increase significantly the number of required projections.
As shown in [SFL19], some of the above issues of BD mapping
can be resolved by an iterative modification of the bound K and
by employing local-global acceleration techniques for geomet-
ric optimization [PDZ∗18].

In certain cases, optimization of non-barrier distortion mea-
sures can be initialized with orientation-reversing maps. For
instance, Weber et al. [WMZ12] proposed an non-linear min-
imization of the Least Square Beltrami (LSB) energy for in-
ducing extremal quasi-conformal mapping of triangle meshes.
This algorithm can be initialized with foldovers because LSB
energy is finite on collapsed and inverted triangles. Since this
method is based on the Teichmüller spaces of conformal equiv-
alence classes of surfaces [JZLG09], it cannot be extended from
triangular to tetrahedral meshes. For the same reason, there is
no good analogy of LSB energy for non-conformal distortion
measures.

If D is a general barrier-type distortion, then one of the prac-
tical ways to allow orientation-reversing initialization of (56) is
to remove barrier terms of D on inverted simplices [NZZ20].
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Fig. 12: Example that illustrates how inversions of triangles impact the values
of barrier and non-barrier isometric distortions. At the top, we plot the two dis-
tortion energies on logarithmic scale as the source vertex is moved horizontally
from the center to the right. The blue curve shows the values of the isometric
barrier distortion defined by (32), and the red curve depicts the non-barrier ver-
sion of (32) constructed according to [NZZ20]. The color of positively oriented
triangles encodes the amount of isometric distortion. The inverted triangles are
colored in yellow.

Fig. 12 shows an example of how this modification impacts the
isometric distortion (32).

Simplex assembling is another approach for enforcing a con-
sistent orientation in problem initialized with non-locally injec-
tive maps. In simplex assembling methods [FL16, PTH∗17],
meshes are disassembled into topologically disconnected sub-
sets. Self-intersections of simplices are repaired, first, by min-
imizing inversion penalties in each component. Then, the ob-
tained connected components are stitched together via carefully
designed matching constraints.

A recent study of [NZZ20] introduces and Adaptive Block
Coordinate optimization (ABCD) for minimizing SVD-based
energies and computing inversion-free maps in R2 and R3.
ABCD is a non-linear geometric solver, based on alternating
optimization of different geometric measures and on adaptive
partitioning of vertices into blocks. Although this method has
no theoretical guaranties to converge to an optimal solution, it
can recover from a highly distorted initializations with a large
fraction of inverted simplices (Fig. 1 bottom).

Finally, we present a brief discussion on the relation between
injective and positively-oriented simplicial maps.

5.3 Injectivity Constraints

There are two types of injective (one-to-one) simplicial
maps: a globally injective and locally injective maps. Although
there is close relation between one-to-one maps and orientation-
preserving maps, these properties of simplicial maps are not
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Fig. 13: A positively-oriented simplicial map f that is not one-to-one. We
highlight areas where the mapping is non-locally injective (b) and non-globally
injective (c). The non-locally injective configuration causes high isometric dis-
tortions and artifacts in the texture mapping (a).

equivalent.
A map f ∈ PL(MMM,n) is locally injective if it maps neighbor-

ing simplices without self-intersections. That is, f is locally
one-to-one if, for any two simplices s1 6= s2 that share common
vertices, we have

int
(

conv(s′1)
)
∩ int

(
conv(s′2)

)
= ∅ , (67)

where s′1,s
′
2 are the corresponding target simplices under f

and int(B) denotes the interior of a set B. Obviously, map f
is globally injective if it is locally one-to-one and conv(s′1)∩
conv(s′2) = ∅ for any disjoint simplices s1,s2 ∈ S .

Satisfying (57) for a
map f , alone, does not
guarantee that f is locally
injective. For example, if v
is a vertex of a planar trian-
gular mesh, then triangles
around v can be twisted
into a loop with an angle
greater than 2π (see the in-
set). Therefore, even if the optimization begins with a glob-
ally injective map and preserves its orientation, it can produce
simplicial maps that are non one-to-one, both on the local and
global scales (see Fig. 13).

Nevertheless, there is a limited number of algorithms for in-
ducing globally injective maps with low distortion on triangular
and tetrahedral meshes [JSP17, SS15, NSZ18]. These meth-
ods start with a globally injective map f 0 and iteratively min-
imize distortions in such a way that, at each iteration i, ori-
entation of the map f i is kept positive and there are no in-
tersections between boundary simplices under f i. This strat-
egy guarantees a global bijection according to the next theorem
[Lip12, AL13, Lip14]:

Theorem 5.1. A positively oriented simplicial map f :
conv(MMM)→ S′ ⊂ Rn is globally injective if the restriction of
f to the boundary, f |∂ conv(MMM) : ∂ conv(MMM)→ ∂S′, is globally
bijective map.

𝑓′

𝑓′ −1 ∘ 𝑓

𝑓

12
1

2

Fig. 14: Top: Injective maps f and f ′ of meshes MMM = (S,V) and MMM′ =
(S′,V ′) onto a common planar domain D. Their composition f◦ = ( f ′)−1 ◦ f
yields a locally injective mapping between the two meshes. Bottom: Refining
the source mesh to repair inversions induced by f◦. We assume that MMM′ is a
planar mesh and demonstrate how the algorithm of [WZ14] maps the selected
area before and after mesh refinements. Showing from the left to the right: a
positively oriented source triangle s ∈ S; the location of the triangle f (s) and
its neighbors mapped by f ′ in D; the negatively oriented target triangle f◦(s)
(marked in yellow). If s is cut across the the dashed line, then s is split into new
source triangles s1 and s2 which are mapped by f◦ onto new positively oriented
target triangles, shown on the right.

6 Mesh Modification Techniques

In some cases, the initial triangulation MMM of a shape S can
be modified to attain a better solution of the optimal mapping
problem on S. As shown in the next two subsections, a proper
modification of meshes often leads to more robust algorithms
for surface parameterization and inter-surface mapping.

6.1 Parameterization and Inter-Surface Mapping

Mesh modifications allow parameterization algorithms to
deal with more restrictive positional constraints. For exam-
ple, algorithms of [SJZP19, KSG03] compute bijective con-
strained parameterizations of surfaces by adding Steiner ver-
tices [PW01] to the original mesh and triangulating the region
between a given target domain and its boundary rectangle.

In certain applications, users might only be interested in the
overall shapes of the source and target domains, rather than
in finding the exact locations of each mesh element. In this
case, by allowing mesh refinements, linear maps (59) can be
extended to more general locally injective maps of meshes onto
non-convex domains. One example of such approach is the
parameterization algorithm of [WZ14] that starts with a given
source mesh and a coarse triangulation of the target polygon.
First, this method computes Tutte embeddings f and f ′ of the
source mesh MMM and target mesh MMM′ onto an intermediate con-
vex domain, then it constructs the map f◦ of MMM onto MMM′, as the
composition

f◦ = ( f ′)−1 ◦ f . (68)

Finally, meshes MMM and MMM′ are gradually refined as long as the
obtained composition f◦ remains a non-locally injective map-
ping.

In geometry processing, intermediate convex domains and
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map compositions are used in various applications, includ-
ing shape matching tasks. In particular, many algorithms for
bijective mapping between two surfaces (inter-surface map-
ping) start by flattening source and target meshes into planar
discs and then matching these discs to find the bijection. For
example, methods of [APL14, APL15, SBCK19] initialize a
shape matching problem with f 0 = f◦, computed according
to (68), then these methods use different non-linear solvers
to reduce isometric distortion of the inter-surface map, while
positional constraints (58) are used to match between given
landmark points. Likewise, mesh modifications are of-
ten used in inter-surface mapping algorithms to induce injec-
tive maps and to handle meshes with different connectivities
[KS04, SAPH04, APL14].

Fig. 14 illustrates some of the above approaches to locally
injective parameterization and inter-surface mapping between
triangle meshes.

6.2 Global Parameterization

Many of existing techniques for locally injective mapping
are limited to domains with a simple topology. Therefore, to
achieve desirable results, it is often necessary to modify a given
triangulation and to simplify mesh topology.

In this subsection, we present a brief introduction to the
global parameterization – a problem of flattening meshes of
a non-disc topology. This problem is closely related to linearly
constrained methods for distortion minimization and locally in-
jective mappings.

Note that most of the mapping algorithms presented so far are
topology-preserving methods. Therefore, these methods can be
applied only for flattening surfaces that are homeomorphic to
a planar disc. However most of the real world surfaces are not
homeomorphic to a disc, and therefore parameterization of such
surfaces requires additional tools of global parameterization.

Assume that MMM = (S,V) is a triangulation of a non-disc
topology surface. Typically, a global parameterization of MMM
consists of the two primary steps: (i) cutting MMM into a disc-
topology mesh MMMD; (ii) flattening of MMMD = (SD,VD) under
constrained positions of vertices that were duplicated during the
first step.

There is a strong correlation between the geometry of the
mesh cut and the quality of the obtained global parameteriza-
tion. For example, consider parameterization of a well-cut brain
surface, depicted by Fig. 1 (top), and parameterization of a sim-
ilar poorly cut surface, shown in Fig. 4. Clearly, flattening of a
poorly cut mesh leads to increased distortions.

In order to attain a global parameterization with low distor-
tions, some methods for cutting meshes into a disc are based on
the joint minimization of geometrical energies and quality mea-
sures of the cut [PTH∗17, LKK∗18, SSC18]. Other methods for
mesh cutting are based on discrete exterior calculus [MZ13] and
on constructions of guided vector fields [CBK15, BZK09]. For
more details about mesh cutting algorithms readers are referred
to: [CSZZ19, HCW19, MPZ14, MZ13].

Clearly, the second step of parameterizing MMMD is a special
case of the problem of optimal mapping from R3 to R2. In par-

Fig. 15: Unconstrained global parameterization (left) versus a seamless pa-
rameterization under rotation constraints (69), for ρuv = 1, (right).

ticular, the most common constraints, employed in the second
stage of global parameterization, are rotation constraints aimed
at aligning textures along the cut edges (seam edges). If v,u∈V
are neighboring vertices of a seam edge and v′,u′ ∈ VD \V are
their duplicates, obtained during the mesh cut, then typical rota-
tion constraints for these vertices are expressed as the following
complex equation:

xxxu− xxxv = eiiiπρuv/2(xxxu′ − xxxv′
)
, ρuv ∈ {0,1,2,3} . (69)

If a global parameterization f [xxx] ∈ PL(MMMD,2) satisfies con-
straints (69) for any pairs of duplicated edges (u,v) and (u′,v′)
of MMMD, then f is called a seamless parameterization (see Fig.
15).

Note that rotation constraints are compatible with most
distortion minimization techniques presented in Section 4.3.
Therefore, seamless parameterization methods can employ the
tools from the previous sections for distortion minimization and
locally injective mapping. For instance, [BCW17, HCW19]
employ a modified Tutte embedding for initialization and the
BD method [Lip12] for ensuring a locally injective parameteri-
zation of MMMD. Likewise, final stages of global parameterizations
[CSZZ19] and [HCW19] minimize the isometric distortion (32)
via SLIM and PN solvers, respectively.

A more elaborate discussion of surface parameterization is
beyond the scope of this paper. We refer readers to [HLS07] for
a survey of classical methods in global parameterization, and to
[ZTZC20, CSZZ19, HCW19, BCW17, MZ13] for the overview
of more recent global parameterization methods.

7 Continuous versus Discrete Mapping

We have developed theory that works for both continuous
and discrete maps, nevertheless there are some important dif-
ferences between the continuous and discrete cases.

Roughly speaking, the continuous version of problem (1) is
more general and admits a larger set of solutions compared to
its discrete counterpart; certain types of distortion minimizers
can only be realized over continuous domains, but not over dis-
crete ones. Here we explain this inherent difference between
the two settings for minimizing conformal distortions (see Def-
inition 2.14). Global minimizers of conformal distortions are
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closely related to the so-called extremal quasi-conformal maps
[WMZ12]. Recall that a map is conformal if it stretches the
space equally in all directions (see Definition 2.6), i.e., for a
simplicial map f , this means that for all s ∈ S singular values
σi(d fs) are equal. In other words, f is conformal if, for each s,
linear components of d fs are uniform scaling transformations,
i.e.,

∃θ : S → R s.t. ∀s ∈ S : [d fs]∼ =
[
eθ(s)In×n

]
∼
, (70)

where ∼ if the equivalence relationship from (19).
In the continuous settings, there is a fundamental difference

between the plane and higher dimensions. According to Riem-
man mapping theorem, any pair of simply-connected domains
in the plane can be mapped conformally. In contrast, Liou-
ville’s theorem [KR07] states that conformal maps in dimen-
sions n ≥ 3 are restricted to the limited set of Möbious trans-
formations, consisting of the compositions of rigid transforma-
tions, uniform scaling and inversions on a sphere.

The notion of continuous conformal maps is also well studied
in Riemannian settings, where the conformality is formulated
for both Riemannian metrics and for mapping between Riem-
manian manifolds according to the following definitions:

Definition 7.1. (Riemannian conformal metric) Two Rieman-
nian metrics g1 and g2 of a manifoldM are called conformally
equivalent if

∃θ :M→ R s. t. g1 = eθg2 . (71)

Definition 7.2. (Riemannian conformal map) A diffeomor-
phism f : (M,g)→ (N ,h) between two Riemannian manifolds
is called conformal if the pulled back metric f ∗h, induced by f
onM, is conformally equivalent to g.

The function eθ in (71) and (70) is called a conformal factor.
In both the discrete and continuous settings, conformal factors
can be interpreted as uniform scaling of source domain caused
by a map.

According to the above definitions, each conformal map f
can be associated with its conformal factor, defined over the
source domain. This view leads to the interpretation of the
conformal mapping as a transformation that preserves shape of
spheres, which gives an alternative definition of a conformal
map.

In the continuous scenario, spheres can be infinitesimally
small, leading to a high degree of freedom in setting conformal
factors. However, in the case of triangulated domains, confor-
mal factors are set per simplex and so that the conformal fac-
tors coincide on common faces of neighboring simplices. Thus,
once θ(s0) is set on a simplex s0, it automatically predefines θ

on all simplices sk that are face-to-face connected to s0. By the
face-to-face connection, we mean that there is a path of sim-
plices s0,s1, . . . ,sk such that each pair {s j−1,s j} shares a com-
mon face. We call MMM = (S,V) a properly connected complex if
all of its simplices are face-to-face connected (see Fig. 16 for
the illustration). A conformal map f of a properly connected
mesh can be specified, up to a rigid motions of target simplices,
by defining a single linear component d fs0 . This restriction of
simplicial maps is formalized below.

𝑠0

𝑠𝑘

𝑠1

Fig. 16: From left to right: a properly connected simplicial complex, a not
properly connected simplicial complex and its image under a conformal simpli-
cial map. Note that Theorem 7.1 does not apply to a path-connected mesh MMM if
MMM is not properly connected.

Theorem 7.1. Let f : conv(MMM) → Rd be a simplicial map-
ping of n-dimensional properly connected simplicial complex
MMM = (S,V,yyy), embedded in Rm, m ≥ n and d ≥ n. If f is con-
formal, then, for each s∈S, fs is a composition of a rigid trans-
formation from Rm to Rd and the same uniform scaling of Rd .

Proof. Pick the conformal factor e0 = eθ(s0) on some simplex
s0. Then, eθ(s) = e0 for all the neighbors s of s0, since otherwise
MMM is not properly embedded. Furthermore, the latter equality
holds for any s ∈ S , since MMM is connected. Consequently, (46)
and (70) imply

∀s ∈ S : f̃s = ψs ◦ fs ◦φ
−1
s , (72)[

d f̃s
]
∼ = [diag(e0, . . . ,e0)]∼ , (73)

where ψs and φs are transition maps, set per simplex according
to (46). Assume w.l.o.g. that φs and f̃s are linear transforma-
tions, then

fs = ψ
−1
s ◦diag(e0, . . . ,e0)◦φs (74)

= ψ
−1
s ◦φs ◦diag(e0, . . . ,e0) , (75)

where (ψ−1
s ◦ φs), s ∈ S , are rigid transformations and

diag(e0, . . . ,e0) is the uniform scaling, as stated by the theo-
rem.

Consequently, in contrast with the continuous scenario, dis-
crete conformal maps constitute a very restricted family of
maps, regardless of whether the maps are defined in the plane
or in higher dimension.

From the conformal geometry viewpoint, patterns of spheres
are more convenient structures than simplicial complices be-
cause spheres are the basic invariants of conformal maps. In
particular, if a surface is divided into a pattern of circles, then
a continuous conformal map on that surface can be discretized
by specifying a Möbius transformation per each circle. This
approach, known as a circle parking metric, is used to allow
more flexibility in the underlying conformal structure of dis-
crete mappings.

In the plane, Möbius transformation are conformal maps that
transform circles into circles 12. These transformations preserve

12Here we consider the generalized notation according to which lines are
circles with infinite radius.
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the so-called four point cross-ratio

CR(rrr1,rrr2,rrr3,rrr4),
(rrr3−rrr1)(rrr4−rrr2)

(rrr3−rrr2)(rrr4−rrr1)
, (76)

defined for complex numbers rrr1,rrr2,rrr3,rrr4 ∈ C. In particular,
(76) implies that a unique Möbius transformations f (rrr) :C→C
can be defined using the cross-ratio equation,

CR(rrr,rrr1,rrr2,rrr3) = CR
(

f (rrr), f (rrr1), f (rrr2), f (rrr3)
)
, (77)

that specifies the given correspondence between source points
rrr j and target points f (rrr j), for j = 1,2,3. This property is used
in various applications for planar deformations and shape anal-
ysis. For example, Möbius transformations between critical
points of the average geodesic distance are used in [KLCF10]
for a global symmetry analysis of surfaces. Lipman et al.
[LKF12] extend (77) to an analytic formula for computing ex-
tremal quasi-conformal mappings between quadruplets.

The circle parking approach and the related preservation
of the cross-ratio leads to the “piecewise Möbius paradigm”
for discrete conformal mapping. According to this paradigm,
conformal maps are approximated by As-Möbius-As-Possible
(AMAP) transformations of adjacent triangles. This leads to
two alternative definitions of discrete conformality. According
to the first definition a map f of a triangle mesh is conformal if it
preserves intersecting angles of triangle circumcircles [KSS06];
whereas according to the second definition f is conformal if
it preserves the absolute values of cross-ratios (76), computed
per each pair of adjacent triangles [SSP08]. Notably, the cross-
ratio definition of the conformality can be extended, with cer-
tain limitations, to maps f : R3 → R3 by representing 3D co-
ordinates via imaginary quaternions Img(H) (see [CPS11]) and
by considering a quaternionic cross-ratio [VMW15, VMW17],
i.e., the quantity CR(rrr1, . . . ,rrr4) defined according to (76) for
points rrr1, . . . ,rrr4 ∈ Img(H).

Conformal maps of circle patterns can be encoded by spec-
ifying edge-based conformal factors on triangular meshes. In
this case, map f is a conformal map if it scales uniformly half-
edges sharing the same vertex (see illustration in Fig. 17).
This metric approach is employed in computations of confor-
mal maps based on Ricci flow and solutions of the Beltrami
equation [ZLYG09, CLL15].

Although circle parking metric naturally extends to non-
Euclidean geometries, conformal factors of this metric are de-
fined implicitly via the length of simplicial complex edges or
radii of circumscribed circles. Therefore, unlike the finite ele-
ment formulation, in the circle parking metric, conformal maps
are constructed in two separate steps: first, conformal factors
are computed, then the obtained metric is embedded into the
target space. The embedding step can be be formulated as op-
timization problem (1) with respect to isometric distortion; it
brings our discussion back to indirect methods and other distor-
tion optimization approaches, covered in Section 4.3.

While simplicial conformal maps are prescribed by setting a
single conformal factor, a general map f ∈ PL(MMM,n) is char-
acterized by its singular values σ1(d fs), . . . ,σn(d fs), computed
over a subset of simplices in S. However, if simplicial map f
possesses a low conformal distortion, then, in practical terms,

Fig. 17: A circle packing metric illustrated for an approximate conformal pa-
rameterization, computed by the BFF method [SC18]. According to Theorem
7.1, the obtained parameterization f is a quasi-conformal mapping. Therefore,
some planar circles are mapped by f−1 into ellipses.

f can be described by a set of approximate conformal factors.
In particular, if f ∈ PL(MMM,n) is a quasi-conformal map, ap-
proximating a continuous conformal map fcont, then f induces
a low conformal distortion, so that its components fs, s ∈ S,
are close to be similarity transformations. In this case, confor-
mal factors of fcont can be approximated by computing average
singular values of f on simplices s ∈ S:

DCF(d fs),
(
σ1(d fs)+ · · ·+σn(d fs)

)
/n. (78)

As shown by Fig. 1, a histogram of distortions (78) can be em-
ployed as a map descriptor or as a shape signature for a collec-
tion of 3D objects, mapped onto a common domain [BCG08].

8 Convex Analysis of Distortions

The main challenge in optimal mapping of a mesh MMM =
(S,V) steams from the fact that, in most cases, objective mea-
sure E(xxx) and a set of feasible target coordinates,

X f (MMM,n),
{

xxx ∈ Rn|V ||∀s ∈ S : detd fs[xxx]> 0
}
, (79)

are both non-convex. Therefore, to obtain a convex approxima-
tion of the problem one need to modify both the energy E and
the set X f . Usually, finding a convex subset of X f requires
to remove a significant part of the feasible set, as the shape of
X f is very irregular. Despite the highly-non convex structure
of (79), certain geometric measures can be realized by simple
distortion energies that are convex in xxx ∈ Rn|V |, over the entire
set of target coordinates. If E(xxx) is a convex distortion energy
and convi(X f ) ⊂ X f is a convex subset of (79) constructed at
iteration i, then optimizing E(xxx) in convi(X f ) avoids the need
for the energy approximation step (64). Therefore, minimizing
a convex distortion leads to better convergence than minimizing
a similar non-convex energy. In particular, in a convex scenario,
the exact Hessian of E(xxx) can be used in (63) and (64) for New-
ton optimization. Furthermore, in certain problems, such as har-
monic mapping into a planar disc or minimization of TLC, ori-
entation requirements (57) can be substituted by setting proper
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Source Dirichlet 𝒟𝐿2 𝒟𝐿3

Anchors

Fig. 18: Examples of convex distortion energies, introduced in Section 8. From the left to right are depicted: source tetrahedral mesh with fixed position of
endpoint vertices (anchors) and resulting minimization of Dirichlet energy (25) and of symmetric gauge distortions induced by L2 and L3 norms, respectively. All
optimization problems are initialized by the identity map and the solutions are obtained via BCQN solver [ZBK18].

boundary constraints. In such cases, computing a local min-
imizer of (56) under constraints (58) is guaranteed to achieve
the global minimum of a convex measure E(xxx).

For example, we can penalize ‘stretching’ of the Euclidean
space by convex distortion measures, including the Dirichlet
energy (25) and some of its variants [LPRM02]. To the best of
our knowledge, there is no larger family of SVD-based distor-
tions that are proven to be convex in xxx and that are also used in
practical applications.

In view of the above considerations, the first goal of this sec-
tion is to introduce a new family of convex distortions. Our sec-
ond goal is to introduce a convex analysis of distortions and to
identify necessary and sufficient conditions for distortion mea-
sures to be convex functions. This gives us criteria by which we
can formally prove that the vast majority of existing distortion
energies are non-convex in xxx.

We begin by expanding analysis of the relevant mapping
spaces. Due to the determinant constraints (57), the space
X f (MMM,n) constitutes an open and non-convex subset of Rn|V |.
Moreover, even the smaller set of non-degenerate simplicial
maps

Diff(MMM,n),
{

f ∈ PL(MMM,n)|detd fs 6= 0, s ∈ S
}

and its continuous counterpart Diff(Rn) are both highly non-
convex. Here by “highly non-convex” we mean that, at any
point, any large-enough subspace containing this point is non-
convex. Indeed, maps in the resulting space can be identified
with their Jacobians. Thus, the set of non-singular matrices
J ∈ GL(R,n), characterizes the family of non-degenerate maps
by prescribing the Jacobian at each point, or over each sim-
plex. The set GL(R,n) is not closed under addition, and the
radius of the maximal convex subset around J of GL(R,n),
is σn(J), i.e., the smallest singular value of J. Consequently,
for a given f ∈ Diff(Rn), the diameter of a maximal convex-
subset of f is a function of the chosen norm on Diff(Rn) and
the smallest singular value σn(d frrr),rrr ∈ S (in the discrete case,
σn = σn(d fs),s ∈ S).

Due to the non-convex structure of the mapping spaces, most
of the exiting methods for solving (56) are based on iterative
optimization algorithms — each iteration of these algorithms
modifies target coordinates in a small convex neighborhood of
xxxi ∈ convi

(
X f (MMM,n)

)
, where results are guaranteed to satisfy

(54). As pointed out in Section 4.3, there are many methods

for building subsets convi(X f ), including representations of BD
spaces by cones and polytopes, computations of line search in-
tervals for non-linear solvers, and more. Since it is impractical
to analyze distortion convexity for every possible choice of the
subset convi(X f ), we do not restrict our analysis to a specific
convexification of the mapping space. Thus, we treat distortion
energies as functions of xxx ∈ Rn|V |.

One the one hand, this approach allow a more straightforward
analysis of distortions. On the other hand, having no restrictions
on target coordinates xxx can produce points where the linear map
d fs[xxx] has zero singular values. To overcome this limitation,
we assume that all the distortions measures, considered in this
section, are normalized and extensible to Ln, the closure of Ln

in Rn. That is, we consider normalized distortions D(σ) that
can be extended to the function D : Ln→ [0,∞], as follow:

D(σ),

{
D(σ) σ ∈ Ln

lim
σ′→σ

D(σ′) σ ∈ ∂Ln .
(80)

If the limit ofD exists in (80) for every σ∈ ∂Ln, thenD is called
an extended distortion ofD. It is easy to show that extended dis-
tortions satisfy the essential properties of Definition 2.11, for
differentiable maps f ∈C1(Rn). If D is the extended distortion
of D, then E = ED(xxx), defined according to (47), is the exten-
sion of the energy ED(xxx) from {xxx ∈ Rn|V || f [xxx] ∈ Diff(MMM,n)}
to the arbitrary target coordinates xxx ∈ Rn|V |.

Since E and D can be infinite, we use the epigraph definition
of the function convexity. That is, E(xxx) is a convex function of
xxx if its epigraph, denoted by epiE, is a convex subset of Rn|V |

(see the example at the bottom of Fig. 19). We use the same
notion of the convexity for D with respect to arguments J ∈
Rn×n and σ ∈ Ln. Likewise, we say that D(J) and D(σ) are
convex if D is well-defined convex function of J ∈Rn×n and of
σ ∈ Ln, respectively.

As shown by (52), there is a linear transformation that iden-
tifies Jacobians d fs with the target coordinates xxx. We can, thus,
detect which distortion measures are convex with respect to xxx
by analyzing the convexity of distortions as if they are functions
defined over n×n Jacobian matrices. Hence we extend exist-
ing convex measures by introducing a new family of distortions
and proving that elements of this family are convex functions in
the Jacobian.

Due to the triangle inequality, any matrix norm ‖J‖, J ∈Rn×n
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is a convex function of J ∈ Rn×n. Consequently, distortion D
is a convex measure in J ∈ Rn×n, if there is a matrix norm ‖ · ‖
such that D(J) = ‖J‖ for each J. These observations are for-
malized by the following lemma:

Lemma 8.1. Let ‖ · ‖ be a matrix norm in Rn×n and define

D : GL(R,n)→ R, D(J), ‖J‖. (81)

If ‖ · ‖ is a unitary invariant norm, that is,

‖RJ‖= ‖JR‖= ‖J‖, ∀J,R ∈ Rn×n, |detR|= 1 , (82)

then, D is a first-order distortion and D(J) is convex in J ∈
Rn×n.

Proof. The proof is immediate: due to the norm convexity and
norm continuity, D(J) = ‖J‖ is a convex function of matrices;
D satisfies first order precision (Definition 2.11) by its defini-
tion, and (9) is met by our assumption on the unitary invariance
of ‖ · ‖.

Lemma 8.1 implies that each unitary invariant matrix norm
‖ · ‖ defines, via (81), a convex distortion density D( f ,rrr) =
‖d frrr‖. Indeed, if ‖·‖ is unitary invariant, then SVD of J ∈Rn×n

implies that ‖J‖ can be expressed as a function of J’s singular
values

‖J‖= g
(
σ1(A), . . . ,σn(A)

)
, (83)

and, therefore, the restriction of g to GL(R,n) is a distortion
measure, according to Theorem 2.1.

According to matrix analysis, a function g that satisfies (81)
with a unitary invariant norm ‖ · ‖ is called a symmetric gauge
function. There is a number of equivalent ways to define sym-
metric gauge functions. We adopt the following definition
[HJ90]:

Definition 8.1. A function g : Rn → (−∞,∞] is called abso-
lutely permutation-symmetric if for any rrr ∈Rn and permutation
P of Rn

g(|rrr |) = g(rrr) = g(Prrr) .

An absolutely permutation-symmetric function g is called a
symmetric gauge function if there exist a vector norm ‖ · ‖ such
that, for any rrr ∈ Rn, g(rrr) = ‖rrr‖.

In particular, all unitary invariant norms are characterized by
symmetric gauge function via the following theorem [HJ90, pp.
438-439]:

Theorem 8.1. A matrix norm ‖J‖, J ∈ Rn×n is unitary invari-
ant norm iff there is a symmetric gauge function g, such that
‖J‖= g

(
σ1(J), . . . ,σn(J)

)
.

Consequently, according to Theorem 8.1 and Lemma 8.1, the
following distortion measures are convex functions of Jacobian
matrices:{
Dg : J 7→ g

(
σ1(J), . . . ,σn(J)

)∣∣g− symmetric gauge
}
. (84)

We refer to the set (84) as to the symmetric gauge distortions.
This subset includes the following well known unitary invariant
norms [HJ12, pp. 465-466]:
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Fig. 19: Illustration of the convex analysis of Theorem 8.2 in 2D. Right: Target
triangles induced by the interpolated coordinates xxx(t), computed according to
(85). Triangles are colored in the same way as in Fig. 12. Left: We plot energies
EDARAP (xxx(t)) and log

(
EDSD (xxx(t))

)
as functions of t, where DARAP and DSD

are the distortion measures (33) and (32). At the bottom-left, we highlight the
epigraph of symmetric Dirichlet energy, shown on a logarithmic scale.

• Lp-norms:

DLp(σ), ‖σ‖p =
(
σ

p
1 + · · ·+σ

p
n
)1/p

, 1≤ p <∞ .

• The spectral norm:

Dspec(d frrr), ‖d frrr‖2 = σ1(d frrr) .

• Ky Fan k-norms:

D[k](σ), σ1 + · · ·+σk, k = 1,2, . . . ,n .

Obviously, we can extend (84) to a larger family of convex
distortions, by applying basic operations that preserve the con-
vexity, such as raising Dg into a positive power, or using a con-
vex combination (38) of symmetric gauge distortions.

As we have previously mentioned, if distortion D is con-
vex with respect to Jacobian matrix, then, in the discrete case,
D
(

fs[xxx]
)
, s ∈ S , is convex as a function of target vertex coordi-

nates. Therefore, energies (47) of symmetric gauge distortions
(84) and of their variants are convex in xxx. In Fig. 18, we il-
lustrate volumetric mappings that minimize symmetric gauge
distortions.

In a certain way, symmetric gauge distortions are general-
izations of the Dirichlet energy (25) that assesses the degree
to which Rn is stretched under f . However, these distortions
could not be used for estimating other geometric measures such
as length constructions, angle deviations and more. Notably, as
shown by the next theorem, convex distortions cannot be used
to assess some of the fundamental geometric measures:

Theorem 8.2. Distortion energy ED(xxx) is neither convex nor
concave in xxx if D is well-defined extension of distortion D and
any of the following statements is true:
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1. D is an isometric distortion;

2. D is a conformal distortion;

3. D is a (unsigned) volume distortion;

4. D is a normalized barrier distortion, i.e., D(σ) holds the
normalization, the bottom and top barrier properties of
Corollary 2.1.

By the isometric, conformal or volume distortion we mean that
J ∈ GL(R,n) is a global minimum of D(J) iff the linear map J
is isometric, conformal or (unsigned) volume-preserving map,
respectively.

Proof. We provide a constructive proof for an arbitrary iso-
metric distortion D. Fig. 19 illustrates our proof for two-
dimensional distortions, defined by (33) and (32). For non-
isometric measures, repeat the same proof with a conformal or
volume distortion D.

Consider the complex of a single simplex MMM =
(
{s},V,yyy

)
,

embedded in Rn, and the following target coordinates:

xxx(t) = (1− t)yyy+ tyyy, t ∈ R , (85)

where yyy denotes the reflection of yyy in the plane {0}×Rn−1.
Observe the value of E( f (t)) = Vol(s)D( f (t)) induced by sim-
plicial map f (t) = f [xxx(t)]. According to our assumption, the
identity map f (0) and the reflection f (1) equal to the global min-
imum E

∗ of an isometric distortion energy E, and E( f (t)) =
E(xxx(t)) > E

∗ for any t 6∈ {0,1} because for any such t the
map f (t) is non-isometric (also non-conformal and non-volume-
preserving). Denote by E

[t0,t1] the following segment of a line:

E
[t0,t1] =

{
(1− t)E

(
xxx(t0)

)
+ tE

(
xxx(t1)

)
|t ∈ [0,1]

}
. (86)

Then, the segment E
[0,1] is located below the epigraph

epiE
(

f [xxx]
)
, while the segment E

[−1,2] resides above the points
E
(
xxx(t)
)
, t = 0,1. This immediately implies that E is non-convex

and non-concave in xxx ∈ Rn|V |.
Similar proof applies to a normalized barrier distortion: thus

we conclude that for

τ = inf
{

t ∈ (0.5,1]|E(xxx(t)) = E
∗}

,

E
[1−τ,τ] is located below epiE and τ > 0.5, whereas, for a large

enough T ∈ (1,∞), the segment E
[1−T,T ] is placed above points

E
(
xxx(1−τ)

)
and E

(
xxx(τ)
)
.

Our next task is to provide a simple, yet general, criterion for
the convexity of extended distortions. This criterion is based
on the following property of unitary invariant matrix functions
[Lew95, Bec17]:

Proposition 8.1. Suppose that g : Rn → (−∞,∞] is continu-
ous and absolutely permutation-symmetric function. Then, the
function g(σ(J)) of matrices J ∈ Rn×n is convex iff g is convex.

This proposition implies the following theorem:

Theorem 8.3. Assume that D is the extended distortion of a
continuous distortion measure D and denote by qqq↓ the vector
of components of qqq ∈ Rn, sorted in descending order. Then,
D(J) is convex in J ∈ Rn×n iff D

(
|qqq|↓
)

is convex in qqq ∈ Rn.
Furthermore, if D

(
|qqq|↓
)

is convex in qqq, then the distortion en-
ergy ED is convex in xxx.

Proof. Define the following vector function:

g(qqq) =D
(
|qqq|↓
)
.

Clearly, g is continuous and absolutely permutation-symmetric
function and D(J) = g

(
σ(J)

)
. Therefore, the first statement of

the theorem is proved by applying Proposition 8.1 for the func-
tion g. The second statement is true because, for any simplicial
complex (S,V) and any simplex s ∈ S, xxx 7→ d fs[xxx] is a linear
map from Rn|V | to Rn×n.

According to Theorems 8.2 and 8.3, symmetric gauge distor-
tions and their variants are the only convex distortion measures
introduced so far in our paper. Noteworthy, some distortions
D(σ) could not be extended to the set of non-negative singu-
lar values and therefore our convex analysis is not applicable to
these distortions. In particular, distortions (26), (27) and (29)
contain singular value ratios and thereby are not extensible to
Ln. Although these distortions are non-convex in a general case,
some of them are proven to be convex when restricted to small
subsets of X f . For example, if f [xxx] is inversion-free flattening of
a triangle mesh and xxxv is a target coordinates of a single vertex
v ∈ V , then EMIPS2D(xxxv) is convex in the interior of the one-ring
of f (v) [HG00].

Finally, to complete our discussion on the convexity, we
would like to notice that certain non-convex energies E(xxx) be-
come convex when considered as functions of other mesh pa-
rameters. For instance, the symmetric Dirichlet energy (32) is
convex with respect to edge length squares (ELS). This prop-
erty of ELS-based energies is employed in a number of recent
studies on shape interpolations [ACZW19] and surface param-
eterization in a metric domain [CLW16].

9 Multi-Resolution Invariance of Distortions

Our approach to optimizing geometric distortions is built
upon a piecewise linear approximation of the real-world contin-
uous deformations. However, there exist infinitely many tessel-
lations of the same proper domain S, leading to an infinite num-
ber of possibilities for representing continuous deformations of
S. Thus, one should formally prove that problem (53) is well
defined in the sense that “equivalent” simplicial complices in-
duce equivalent simplicial maps and equivalent minimizers of
these maps. First, to formulate the concept of equivalent sim-
plicial complices, we define the following notion of simplex
refinement:

Definition 9.1. Let S, C and V, U be two simplex sets and
two vertex sets, respectively, and let SSS = (S,V,ΨS) and CCC =
(C, U ,ΨC) be two n-dimensional simplicial complices of these
sets, such that their interiors are locally embedded into Rm,
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Fig. 20: Using subdivision schemes to refine the initial parameterization of the triangular mesh (top left). We use the following schemes: linear subdivision,
which is an example of simplicial map refinement; Loop subdivision scheme; triangulated Catmull-Clark scheme, i.e., Catmull-Clark scheme in which polygons are
triangulated at each iteration. We plot distortions (26), (29) and (33) as functions of a number of subdivision iterations (bottom right). Note that we subdivide target
and source domains by the same scheme to keep the right correspondence between their simplices.

m ≥ n, by functions ΦS : V → Rm and ΨC : U → Rm. For
s ∈ S, denote by ΨS(s) and Vol(ΨS(s)) the convex hull of ver-
tices {ΨS(v)|v ∈ s} and the n-dimensional volume of the con-
vex hull, respectively. By ΨC(c) and Vol(ΨC(c)) we refer to the
same notations, defined for a simplex c ∈ C and for the function
ΨC . We call CCC a refinement of SSS if

∑
c∈C
|Vol(ΨC(c))|= ∑

s∈S
|Vol(ΨS(s))| , (87)

and for each s ∈ S there exists a finite set of simplices
c1, . . . ,ck ∈ C, such that

ΨC(c1)∪ΨC(c2) · · ·∪ΨC(ck) = ΨS(s) . (88)

𝑓𝑠

𝑔𝑐

Next, we extend the notion of the re-
finement to simplicial maps as follows:

Definition 9.2. Let g and f be sim-
plicial maps defined over simplicial
complices CCC = (C,U ,ΨC) and SSS =
(S,V,ΨS), respectively (see the inset).
We call g a refinement of f if CCC is a refinement of SSS and if

gc (ΨC(u)) = fs (ΨC(u)) , (89)

for any u ∈ c ∈ C and any s ∈ S containing vertices of c.

We use Definition 9.2 to formulate the multi-resolution prop-
erty of distortion measures in the following theorem:

Theorem 9.1. Let D(σ) : Ln→ R be a distortion measure and
CCC = (C,U ,ΨC) be a refinement of SSS = (S,V,ΨS). Assume that
simplicial map f of CCC is a refinement of simplicial map g of SSS,
then

ED( f ) = ED(g) ,

where ED is the distortion energy (47) of f and g, computed
with respect to D and volume weights w(s) = Vol

(
conv(s)

)
.

Theorem 9.1 follows from the two facts: (i) piecewise affine
approximation of a piecewise affine map f is the same map f ;
(ii) refinements preserve the total simplex volume. The formal
proof of Theorem 9.1 is presented below:

Proof of Theorem 9.1. Each simplex s ∈ S can be decomposed
into simplices c1, ...,ck ∈ C, such that these simplices satisfy
(88) and

k

∑
i=1

Vol(ΨC(ci)) = Vol(ΨS(s)) . (90)

Equality (90) follows from (87) and from our underlying as-
sumption that embedded simplices are consistently oriented.
Since g is a refinement of f , for each c = ck, these mappings
satisfy n+ 1 equations (89) with vertices u1, ...,un+1 ∈ c. The
resultant system of n+1 equations defines, via (50), an unique
equivalence class of affine mappings from Rm to Rd . Conse-
quently, [g̃c]∼ = [ f̃s]∼, since these classes contain n-rank affine
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maps that hold the same n+ 1 linear equations. Thus, by the
definition of distortion measures

D(dgc) =D(gc) =D( fs) =D(d fs) . (91)

According to (90), the proof is completed by taking a weighted
sum of the left-handed and right-handed sides of (91), over all
simplices s ∈ S .

Broadly speaking, subsequent refinements of a simplicial
map f form a series of map representations in increasing resolu-
tions, i.e., f is represented with respect to an increasing number
of simplices with diminishing sizes. In this context, Theorem
9.1 establishes an important property of a multi-resolution in-
variance of volume-weighted distortion energies. In order to
formulate a more general multi-resolution invariance, we de-
fine an equivalence between simplicial complices and simpli-
cial mappings:

Definition 9.3. Two simplicial complices CCC1 = (C1,U1,Ψ1)
and CCC2 = (C2,U2,Ψ2) are equivalent if both are refinements of
some simplicial complex SSS = (S,V,Ψ). Similarly, simplicial
maps f1 and f2 of CCC1 and CCC2 are called equivalent if they are
refinements of some simplicial map g of SSS.

Theorem 9.1 leads to the following immediate conclusion:

Proposition 9.1. The values of volume-weighted distortion en-
ergies ED( f ) and ED(g) are equal for two equivalent simplicial
maps f and g.

Practically, 3D models are often represented by a coarse tem-
plate mesh, equipped with an iterative procedure for mesh refin-
ing. This procedure is often called a subdivision scheme. Nu-
merous subdivision schemes for polygonal meshes have been
developed in geometric modeling for obtaining an efficient
multi-resolution representations of models.

Among many others, modeling of subdivision surfaces in-
cludes tessellation schemes, also called linear subdivision
schemes of triangular meshes. These schemes produce equiv-
alent simplicial complices that induce equivalent simplicial
maps. For instance, in surface mapping tasks, each triangle τ

of a triangulated surface can be subdivided into four smaller
triangles through the edge midpoints of τ. A recent study of
[NSZ18] noticed that, in these scenarios, geometric distortions
are preserved during the transition between multiple resolu-
tions. Theorem 9.1 and Proposition 9.1 generalize and prove
formally these finding for arbitrary linear subdivision schemes,
delineated over n-dimensional simplicial complices. Unfortu-
nately, we cannot employ Theorem 9.1 for more general subdi-
vision methods (non-linear), such as Loop [Loo87] or triangu-
lated Catmull-Clark schemes [Sta98] (Fig. 20), where shapes
of subdivided surfaces differ from the shape of the original sur-
face. Nevertheless, as shown in Fig. 20, subdividing maps
between triangular meshes, via non-linear schemes, either de-
creases values of distortion measures, or preserves these values
in a narrow range within their original values. The qualitative
explanation for this phenomena is addressed below.

Common subdivision schemes are designed for attaining
smooth surfaces with a high triangulation quality. Usually,

mesh triangles become nearly regular after a number of sub-
division steps. This, in turn, leads to low conformal distortions,
due to the almost-identical shapes of obtained source and target
triangles. In particular, if each affine component of a simplicial
map f is a similarity transformation, then σ1(d fs) = σ2(d fs) =
· · · = σn(d fs) for all s ∈ S. Therefore, in this case, conformal
distortions (26) (27), (29) and (30) attain their global minimum.

Isometry-based distortions are bounded by the ratio of rela-
tive sizes of source and target domains. If these sizes are the
same, then, similarly to the conformal case, a subdivision pro-
cess is capable of decreasing isometric distortions because it
produces the same number of the source and target simplices
at each iteration. Otherwise, isometric distortions should ap-
proach some lower bound. This bound depends on the scaling
factors and total number of simplices, presented in the lowest
resolution.

Clearly, using subdivision schemes for minimizing distor-
tions is not a practical approach because subdivision process
leads to an exponential growth in the number of simplices.

Nevertheless, according to the above property of simplex
subdivisions, one can first minimize distortion for simplicial
mapping of a coarse triangulation and then subdivide source
and target domains for obtaining a low distortion map in a
higher resolution without degrading the results. Moreover, as
shown by Fig. 20, values of most common distortions are sig-
nificantly reduced after few iterations of triangle subdivisions.
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Appendix A Computational Aspects

We are now in the position to deliver some detail on the im-
plementation. We explicitly write down in full matrix form the
main expressions that arise in Section 4.

Appendix A.1 Jacobian of Simplicial Map

First, assume a general scenario (45) in which dimensions
m and d of the embedding spaces may differ from the simplex
dimension.

Let (v1, . . . ,vn+1) be a oriented n-simplex s ∈ S. To sim-
plify our notations, we denote by vi an element of the vertex
set (vertex index) and by vvviii we denote the source coordinates
of that vertex. That is, if yyy is the source coordinate vector, then
vvviii , yyyvi

∈ Rm. In particular, by vvviii j we denote the j-th coordi-
nate of the point yyyvi

. We employ similar notations for the target
coordinates xxx, i.e., fs(vvvi) = fs(vi) = xxxvi , and f (vi) j denotes the
j-th coordinate of the point xxxvi ∈ Rd .

Assuming that vertex coordinates are column vector, one can
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then represent simplex s as a matrix Ms ∈ Rm×(n+1)

Ms ,


vvv1111 vvv2221 · · · vvv(((nnn+++111)))1
vvv1112 vvv2222 · · · vvv(((nnn+++111)))2

...
... · · ·

...

vvv111m vvv222m
... vvv(((nnn+++111)))m

 ,

where the order of vertices (columns) reflects simplex orienta-
tion. Then, the image of s under fs is represented by

Ms′ ,


fs(v1)1 fs(v2)1 · · · fs(vn+1)1
fs(v1)2 fs(v2)2 · · · fs(vn+1)2

...
... · · ·

...
fs(v1)d fs(v2)d · · · fs(vn+1)d

 . (92)

Using hat functions (48), the expression for the map becomes

fs(rrr) = Ms′hhhs(rrr), rrr ∈ conv(s),

where

hhhs(rrr),
[
hv1(rrr) hv2(rrr) · · · hvn+1(rrr)

]> ∈ R(n+1)×1 .
(93)

Let ∇hvi be the gradient of hvi , computed with respect to
rrr ∈ conv(s), then ∇hvi is constant in conv(s) and according to
(51)

dhvi =−
ηηη j

nVol(s)
∈ Rm×1 ,

where ηηηi is a normal vector defined in (51). Consequently, the
Jacobian matrix of hhhs(rrr), denoted by dhhhs, is given by

dhhhs =
[
dhv1(vvv) dhv2(vvv) · · · dhvn+1(vvv)

]> ∈ R(n+1)×m ,
(94)

and the Jacobian of fs is

d fs = Ms′ dhhhs, d fs ∈ Rd×m . (95)

Note that rank
(
d fs
)
≤ n. Therefore, d fs has at most n non-

zero singular values σ1(d fs), . . . ,σn(d fs). These singular val-
ues can be used for computing n-dimensional distortions of
d fs. Equivalently, we can repeat the above computations for the
canonical representation f̃s of the map for obtaining the canon-
ical form of the Jacobian, d f̃s ∈ Rn×n. Jacobian d fs and its
canonical form have the same n singular values,

σ1(d f̃s) = σ1(d fs), . . . ,σn(d f̃s) = σn(d fs) ,

so that D
(

f̃s
)
=D

(
σ1(d fs), . . . ,σn(d fs)

)
for any distortion D.

Appendix A.2 Distortion Energy Gradient

Assume the scenario (43) of equal dimensions, m = n = d.
Denote by J ∈ Rn×n the Jacobian matrix d fs of a simplicial
map f on a simplex s, and denote by Udiag(σ)V> the SVD
of J. According to [RPPSH17] and [Gil08] the derivation of a
distortion D, computed with respect to J, is given by

∇JD(J) =Udiag
(
∇σD(σ)

)
V> . (96)

If Ms′ ∈ Rn×(n+1) is the matrix (92) of target coordinates of s,
then the derivation of ED with respect to Ms′ can be written as:

∇Ms′
ED(Ms′) = Vol(s)dhhh∇JsD(Js) ∈ R(n+1)×n , (97)

where Js denotes the Jacobian d fs[xxx] and dhhh is defined accord-
ing to (94). The gradient ∇Exxx(xxx) ∈ Rn|V | of E is computed
with respect to the column vector xxx by laying elements of (97)
into their positions in the column vector,

∇M′s E(M
′
s) 7→ ∇Exxx(M′s) ∈ Rn|V | ,

and then ∇Exxx(M′s) are summed for every simplex s ∈ S .
Note that (96) is also valid for the signed SVD representa-

tion of distortion measures, mentioned in Remark 2.1. See the
supplemental material for a more general computation of∇xxxE.
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