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This supplemental document presents some additional results and addresses alternative
approaches to optimal mapping and to computation of the distortion gradient. The
main text and its supplemental document use a coherent numbering for references and
a common bibliography for citations. Likewise, we adopt here identical abbreviations
and notations to those introduced in the main text.
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I Variational Approach

Distortion minimization processes can be interpreted in two
major ways: (i) As a problem argminE(xxx) of optimizing coor-
dinate vectors xxx ∈ Rn|V |, analyzed in Sections 4 and 5; (ii) as a
variational problem argminE( f ), where the objective variable
is a vector function f .

The two problems are equivalent in the discrete settings,
since target vertex coordinates xxx define simplicial map f [xxx]
unambiguously (see optimization problems (56)-(58) and (53)-
(55), defined in Section 4.2).

However, in more general case, it is useful to consider the
variational interpretation of problem (1). Notably, the descend-
ing step, (62), can be reformulated via the Euler-Lagrange for-
mula for gaining better theoretical understanding of the prob-
lem and extending distortion energies to more general weight
functions.

To this end, we redefine distortion energies as function-
als E[ fff ]13, operating above the space of smooth deformations
fff ∈ Diff(Rn),

E[ fff ],
∫
S

w(rrr)D( fff ,rrr)d rrr,
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13We write E[ fff ] instead of E( f ) to distinguish between the variational for-
mulation and the coordinate-based formulation, introduced in (56).

where S = Dom( fff ), w : S → R+ are continuous (positive)
weight functions and D( fff ,rrr) is a distortion measure. Conse-
quently, we consider the optimal mapping problem in the con-
text of the calculus of variations as the following minimization:

argmin
fff ∈ Diff(S,Rn)

fff |S0
= fff 0

∣∣∣
S0

E[ fff ] , (98)

where fff 0 is a given initial deformation of S ⊂ Rn and S0
is a subset of S. Since D( fff ,rrr) depends on n variables rrr =
(rrr1, . . . ,rrrn) and n functions fff= ( fff 1, . . . , fff n), including their
partial derivatives, we consider Euler-Lagrange equation for a
vector function of multiple variables. Consider a general func-
tional

L= L(rrr1, . . . ,rrrn; fff 1, . . . , fff n; fff 1,1, . . . , fff 1,n, fff 2,1, . . . , fff n,n),

that depends on position rrr, function fff (rrr) and on Jacobian ma-
trix d fff , represented as the list of the first order partial deriva-

tives: fff i, j ,
∂ fff i
∂rrr j

, 1 ≤ i, j ≤ n. Then, according to [CH65]
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Euler-Lagrange equation for the problem argmin
fff

∫
S
Ld rrr , is



∂L
∂ fff 1
−

n
∑

i=1

∂

∂rrri

∂L
∂ fff 1,i

= 0 ,

∂L
∂ fff 2
−

n
∑

i=1

∂

∂rrri

∂L
∂ fff 2,i

= 0 ,

...
∂L
∂ fff n
−

n
∑

i=1

∂

∂rrri

∂L
∂ fff n,i

= 0 .

(99)

Since, according to Theorem 2.1, D depends only on the map
derivatives, substituting L(rrr, fff ,d fff ) = w(rrr)D( fff ,rrr) into (99)
yields 

n
∑

i=1

∂w
∂rrri

∂D
∂ fff 1,i

= 0 ,

n
∑

i=1

∂w
∂rrri

∂D
∂ fff 2,i

= 0 ,

...
n
∑

i=1

∂w
∂rrri

∂D
∂ fff n,i

= 0 .

(100)

Note that if the weight function w(rrr) is constant, then the above
Euler-Lagrange formula (100) is reduced to the trivial equality,
(0, . . . ,0) = (0, . . . ,0). Thus, we assume that, unlike piecewise
constant weights, used in (47), w(rrr) is a non-constant function
of rrr and it is differentiable a.e.

According to (100) the functional (or the variational) deriva-
tive of E[ fff ] is

δE
δ fff

,
δE[ fff (rrr)]

δ fff (rrr)
(101)

=

(
n

∑
i=1

∂w
∂rrri

∂D
∂ fff 1,i

, . . . ,
n

∑
i=1

∂w
∂rrri

∂D
∂ fff n,i

)
. (102)

Consequently, the variational approach can be employed for op-
timizing simiplicial maps with more general weight functions.
For example, consider piecewise linear weights, defined on a
triangulated domain MMM. These weights can be expressed via
barycentric coordinates (51) and they can be used in practice for
interpolating data, sampled at vertices, and thereby extending
the data to any point rrr ∈ conv(MMM). For example, consider inter-
polation of texture coordinates on tessellated surfaces, interpo-
lation of intensity values on tetrahedral meshes, reconstructed
from MRI scans, and etc.

Practically, (100) and (101) define a variational GD process
for obtaining an optimal mapping with respect to distortion
measureD. This process is similar to GD update of target coor-
dinates xxx; it starts with a deformation fff (k), k = 0, and computes
the next deformation by

fff (k+1) = fff (k)−∆t
δE
δ fff

∣∣∣∣
fff (k)

, (103)

where ∆t is a given time step and δE/δ fff is computed according
to (102). We can simplify (100) and (102) by using SVD of
Jacobian d fff , as follows:

Let d fff rrr = UΣV T be an SVD decomposition (20) and let
{ν1, . . . ,νn} and {u1, . . . ,un} be the corresponding right and
left signualr vectors of d fff , respectively. We refer to the cho-
sen frames as to SVD coordinates. The Jacobian matrix d fff rrr in
SVD coordinates is represented by

d f̂ff rrr , [d fff rrr]V,U = diag(σ1(d fff rrr), ...,σn(d fff rrr)) . (104)

Since distortions are functions of Jacobian singular values σi,
D satisfies

∂D
∂ f̂ff i, j

= δi j
∂D
∂σi

, 0≤ i, j ≤ n . (105)

Combining this all together yields the following expression
of the functional derivative in {V,U} coordinate frames:

δE

δ f̂ff
=

(
∂w
∂ν1

∂D
∂σ1

, . . . ,
∂w
∂νn

∂D
∂σn

)
. (106)

In the next section, we develop another expression for the en-
ergy gradient. In both expressions, energy gradients are func-
tions of distortion derivatives, ∂D/ ∂σi. Therefore, both formu-
las can be interpreted as transformations from gradients, com-
puted in SVD coordinate frames, to the gradients, computed
with respect to the standard Euclidean bases.

II Distortion Energy Gradient

The remaining part is dedicated for developing an explicit
expression for∇xxxE, with respect to an arbitrary distortion mea-
sure D(d fs[xxx]).

This method differs from the standard approach, presented
in Appendix A.2, because it uses only the basic rules of partial
derivatives. The standard method employs step-by-step compu-
tations for evaluating ∇xxxE. In contrast to that approach, here
we derive a single analytic expression for the gradient of E(xxx),
represented in a matrix form. In our computations, we rely on
the two auxiliary functions that operate on indices that arise in
the discrete case.

The task of the first auxiliary function, is to match between
each simplex and its n+1 vertices to global indexing of vertices
in V . Assuming a global vertex order V = {u1,u2, . . . ,u|V |}, we
define XXX to be the matrix of all target coordinates xxxui put in the
matrix columns according to that vertex order. Then, we set the
first auxiliary function to be

Λ : {1, . . . , |S |}×{1, . . . ,n+1}→ {1, . . . , |V |} , (107)

and use this function to rewrite target coordinate matrix (92) in
the following form:

XXX(s) =

 XXXΛ(s,1)

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣ XXXΛ(s,n+1)

 . (108)

Similarly, we provide a global order of hat functions {(hs)v :
s ∈ S,v ∈ s} and match global indices of each (hs)v with the
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number of row at which (hs)v appears in (93). We denote this
matching function by

Ω : {1, . . . , |S |}×{1, . . . ,n+1}→{1, . . . , |S |(n+1)} . (109)

Let ηηη(s)i be the normal vector ηηηi of the i-th face of s ∈ S and
define NNN(s) to be a matrix of negative normal vectors

{−ηηη(s)i| i = 1, . . . ,n+1},

put in the order of hat functions. We express the rescaled
Jacobian nVol(s)dhhhs by means of the indexing function (109)
as

NNN(s) =


NNNΩ(s,1)

...
NNNΩ(s,n+1)

 , (110)

and rewrite the Jacobian d fs in the following form:

d fs =
1

nVol(s)
XXX(s)NNN(s) . (111)

We then differentiate energy E with respect to j-th coordinate
of target vertex xxxvi

∂E
∂(xxxvi) j

= ∑
s∈S

w(s)
∂D(d fs)

∂(xxxvi) j
(112)

= ∑
s∈S(vi)

w(s)
∂D(d fs)

∂(xxxvi) j
, (113)

where S(vi) denotes the set of simplices sharing vertex vi. The
derivative of the distortion measureD, with respect to target co-
ordinate in (113), is obtained via the chain rule and the singular
value formulation of Theorem 2.1:

∂D(d fs)

∂(xxxvi) j
=

[
∂D
∂σ

]>
∂σ(d fs)

∂(xxxvi) j
(114)

=
n

∑
k=1

∂D
∂σk

∂σk (d fs)

∂(xxxvi) j
. (115)

By employing the indexing of (107) and (109), we rewrite (111)
in the element-wise form:

d f qp
s =

1
nVol(s)

n+1

∑
k=1

(XXXΛ(s,k))q(NNNΩ(s,k))p , (116)

where the superscript, d f pq
s , denotes the p-row, q-column el-

ement of Jacobian d fs. Differentiating (116) with respect to
(xxxvi) j yields

∂(d f qp
s )

∂(xxxvi) j
=

1
nVol(s)

∂

[
(xxxvi)q

(
NNN

Ω(s,Ω−1
s (i))

)
p

]
∂(xxxvi) j

(117)

= δq j

(
NNN

Ω(s,Ω−1
s (i))

)
p

nVol(s)
, (118)

where δ denotes the Kronecker delta and Ω−1
s is the inverse of

the indexing function (109) restricted to {s}× {1, . . . ,n+1},
that is,

∀s ∈ S, i ∈Ω
(
{s}×{1, . . . ,n+1}

)
: Ω

(
s,Ω−1

s (i)
)
= i .

We proceed by applying the chain rule and the SVD derivative
formula from matrix calculus [PL00], to expand the right-side
multiplier in (115):

∂σk(d fs)

∂(xxxvi) j
= ∑

q,p

∂σk(d fs)

∂(d f qp
s )

∂(d f qp
s )

∂(xxxvi) j
(119)

= ∑
q,p

Uqk
s V qk

s
∂(d f qp

s )

∂(xxxvi) j
, (120)

where Us and Vs are orthonormal matrices of left and-right sin-
gular vectors from the SVD of d fs, defined in (20).

Finally, we expand (113) by (115) and then substitute the
resulting expression back in (115). This leads to the following
expression:

∂E
∂(xxxvi) j

= ∑
s∈S(vi)

w(s)
n

∑
k=1

∂D
∂σk

∂σk(d fs)

∂(xxxvi) j
(121)

= ∑
s∈S(vi)

w(s)
n

∑
k=1

∂D
∂σk

∑
p

U jk
s V pk

s

(
NNN

Ω(s,Ω−1
s (i))

)
p

nVol(s)

(122)

= ∑
s∈S(vi)

w(s)
nVol(s)

[
n

∑
k=1

∂D
∂σk

U jk
s

(
∑
p

V pk
s
(

NNN
Ω(s,Ω−1

s (i))

)
p

)]
.

(123)

For obtaining a simpler expression of the distortion gradient,
we rewrite (123) in a vector form:

∂E
∂xxxvi

=

[
∂E

∂(xxxvi)1
, · · · , ∂E

∂(xxxvi)m

]
(124)

= ∑
s∈S(vi)

w(s)NNN
Ω(s.Ω−1

s (i))Vs

nVol(s)
U>s �∇σD[n], (125)

where � denotes the Hadamard (element-wise) product, and
∇σD[n] is the stack of n copies of∇σD,

∇σD[n] ,

 ∇σD

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣ ∇σD


n×n

. (126)

Summarizing the above, we attain the distortion Jacobian:

dxxxE ,


∂E/∂xxxv1

...
∂E/∂xxxv|V |

 . (127)

The matrix form dxxxE is readily available for GD and BGD
optimization algorithms. For more general 1st and 2nd order
solvers of (56), we need to lay down rows of (127) to obtain a
vector form of the gradient∇xxxE. The column vector form of the
gradient is used in the linear system (63) and in the quadratic
proxy equation (64).


