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A B S T R A C T

We present a framework for optimizing a rich family of geometry-based energies de-
fined on planes, surfaces and volumetric domains. Our approach is based on the concept
of first order distortion measures and on the steepest descent optimization. Specifically,
we present an algorithm for inducing optimal deformations for triangular and tetra-
hedral meshes. The resulting techniques apply to a variety of geometry processing
problems, including ones that are highly non-convex. Among these problems are defor-
mation and parametrization of planes, surfaces and volumetric meshes, surface mapping
using volumetric textures, generation of triangular and tetrahedral meshes. In particu-
lar, the proposed techniques can be employed to devise “as close to being conformal
as possible” mappings and other deformations that are nearly optimal with respect to
related distortion measures, such as the isometric distortion and the distortion of a local
volume. Tests, carried out on 2D and 3D data, show that the optimization process is
numerically stable and fast-converging. Our approach is general and it can be run in
parallel processes.

1. Introduction1

A wide class of problems considered in geometry processing
and computer graphics involve computation of mappings be-
tween domains in Euclidean space. These problems are often
formulated in terms of geometric energies that assess the qual-
ity of a map. Let f be a smooth mapping of a domain S ∈ Rn

and consider the following energy

E( f ),
∫
S

ω(x)dist( f ,x)dx, (1)

where ω(x) is a normalized cost function defined over domain2

S, and dist( f ,x) is the energy density at point x that depends3

on f and varies between different geometric problems. Min-4

imizing E( f ) yields the highest quality mapping, and thus it5

provides a preferable mapping between S and a given target6

domain T (see Fig. 1). Formally, we consider the following7

fundamental problem:8

Problem 1. Let S and T be compact domains with non-empty
interiors in Rn (n ≥ 2). Assume that S and T are homeomor-
phic, i.e., there is a 1:1 continuous map of one domain onto the
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Fig. 1: An energy density dist( f ,x) of a spatial mapping f .

other, and let Def(S,T ) be a certain subset of smooth deforma-
tion functions from S to T . Construct an optimal mapping

fopt = argmin
f∈Def(S,T )

∫
S

ω(x)dist( f ,x)dx, (2)

where the fitness of a mapping is measured with respect to an 9

energy density dist( f ,x), called the distortion of f at x. 10

A most common constraints for (2) considered in this work
is the fixation of f on a subset A⊂ S , i.e., a spatial constraint

f |A = g , (3)

where g : S 7→ T is a given continuous function. 11

We refer to Problem 1 as the optimal mapping problem. 12

In practice we are more interested in approximated solutions 13

than in global minimizers of (2), because the proposed prob- 14

lem is too general to be solved under practical restrictions and 15
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constraints. We should, therefore, focus on a narrower class1

of density functions dist( f ,x), which will be referred to as2

first order distortion measures, where “first order” refers to3

the fact that dist( f ,x) does not depend on the 2nd and higher4

order derivatives of the mapping. Despite these restrictions,5

the proposed set of measures is capable of quantifying a very6

wide range of geometric properties and it can be character-7

ized using Jacobian singular values. For instance, various met-8

rics of conformal distortion (such as the aspect-ratio [AL13],9

n-D conformal distortion [LLL15], angle and volume ener-10

gies [PP12], quasi-conformal dilatation [NSZ15, NCQ∗18] and11

least-square conformal energy [LPRM02]), isometric distor-12

tion [NSZ16, NSY17], ARAP [SA07] and Dirichlet energies13

[KABL14], all of which are expressed as functions of Jacobian14

singular values, and therefore readily fit into our optimization15

routine.16

Although our algorithms are implemented for triangular and
tet meshes, the underlined technique can be directly extended
to general polyhedral meshes and to simplicial complexes em-
bedded in Rn. Therefore, we consider the following discrete
formulation of Problem 1:

argmin
f :V→Rn

∑
v∈V

ω(v)dist( f ,v) , (4)

where V is the vertex set of the source mesh that represents S,
ω(v) is a vertex weight and dist( f ,v) is an approximation of
the continuous distortion, dist( f ,x), in the vicinity of a vertex
v. The spatial constrains defined by (3) are expressed in the
discrete case as

f (vi) = fi for vi ∈V, i = 1, ...,m.

Even for a simple distortion metric dist( f ,x), the exact so-17

lution of Problem 1 may give rise to a fundamental difficulty,18

since in the general case there is very little known about prop-19

erties of global minimizers, or even about their existence. For20

example, choose a measure of the conformal distortion that as-21

sesses how far is f from being conformal in a neighborhood of a22

point x. In this case, the global minimizers are closely related to23

the so-called extremal quasi-conformal mappings. To the best24

of our knowledge, there does not exist a technique to charac-25

terize, even qualitatively, the set of extremal quasi-conformal26

mappings for dimensions n≥ 3. The latest research in this area27

provides only a moderate lower bounds of conformal distortion28

for a basic source and target domains, such as convex polyhe-29

drons, n-balls and wedges [Car74, V7̈1]. Therefore, our frame-30

work is not intended to provide an exact solution for the optimal31

mapping problem, instead we consider approximate solutions32

of (2). In particular, for a given mapping f : S → T we are33

looking for techniques that can iteratively refine the mapping34

till the process reaches an admissible degree of convergence.35

Our algorithm is based on a modified gradient descent that36

does not require any constraints on the optimized energies, ex-37

cept the “first order" property and trivial geometric assump-38

tions. Compared with other techniques, our method is more39

general and significantly simpler in the implementation, while40

it is competitive in terms of the performance and accuracy. Par-41

ticularly, on noisy meshes we achieve results that compare fa-42

vorably to state-of-art methods. Moreover, unlike other more43

sophisticated techniques, our algorithms can be naturally paral- 44

lelized using simple mesh cutting. 45

1.1. Related work 46

There are plenty of techniques for construction of planar de- 47

formations via minimization of geometric energies. However, 48

most of these methods employ mathematical tools (e.g., com- 49

plex analysis) that cannot be extended beyond 2D. Therefore, 50

we focus on related techniques that operate on volumetric do- 51

mains or general studies that deal with arbitrary dimensions 52

n ≥ 2. The relevant methods can be qualitatively divided into 53

the following groups: 54

Convexification methods (CM). These include projecting 55

simplicial mappings on the space of bounded distortion maps 56

(BD and LBD) [AL13, KABL15] and controlling singular val- 57

ues via semi-definite programming (SDP) [KABL14]. In gen- 58

eral, these techniques approximate problems similar to (2) by 59

a sequence of nested convex problems for which convex opti- 60

mization tools can be applied. Similarly to our technique, CM 61

methods express geometric energies as functions of the Jaco- 62

bian of a simplicial mapping. However, the use of convex opti- 63

mization tools imposes certain constraints on CM. These tech- 64

niques are therefore not as generic as our approach. Notably, 65

our research deals with the general notation of the spatial defor- 66

mation that extends beyond R3, while the CM techniques, op- 67

erate only on a narrow finite subset of convex and quasi-convex 68

measures. Moreover, in most cases CM methods deal only with 69

orientation-preserving maps and assume monotonicity with re- 70

spect to singular values, which restrict these technique to even 71

smaller subsets of geometric measures and deformations. 72

Harmonic mappings (HM). Minimization of 3D harmonic 73

energy under a fixed boundary constraints yields to the discrete 74

harmonic mappings [WGY∗03, LGW∗07]. These methods are 75

employed in [CPS15] to minimize quasi-conformal errors for 76

volume deformations. The method of [BCWG09] considers lin- 77

ear combinations of the harmonic basis functions that minimize 78

the rigidity energy. HM techniques produce smooth deforma- 79

tions over a wide range of spatial domains. However, compared 80

with our approach, HM methods operate on a restricted space 81

of harmonic functions and consider a limited class of associated 82

geometric measures. Notably, our algorithm is capable of mini- 83

mizing a linear combination of various measures, including the 84

smoothness or Dirichlet energy which is closely related to HM. 85

Most-Isometric parametrization (MIPS). The classical 86

MIPS energy [Hor01] is extended in [FLG15] to advanced 87

MIPS energies optimized over triangular and tetrahedral do- 88

mains by indirect block coordinate descend. However, [FLG15] 89

and other related MIPS techniques are restricted to few con- 90

formal and isometry-based energies, and they do not consider 91

a general framework of generic distortion measures and their 92

properties. Similar global approaches to mesh parametriza- 93

tion and surface mapping are considered in BPFB [SS15] and 94

[APL14], respectively. 95

Least squares projection. Least square fitting, used for con- 96

struction of 2D conformal mapping, is extended in [PP12] to 97

volumes. The method projects a volumetric mapping into co- 98

ordinate planes of 3D space, and solves the corresponding sys- 99

tem of Cauchy-Riemann equations [Ahl66, pp. 24-25]. Since 100
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Cauchy-Riemann equation characterizes 2D conformal func-1

tions, projections of resultant volumetric maps approaches con-2

formality. The study of [BDS∗12] unifies major least squares3

geometry processing techniques into a framework of shape pro-4

jection operators. Although shape operators can represent a va-5

riety of geometric properties, the implementation of this method6

requires separate algorithms for different geometric problems.7

In contrast, we present a single algorithm capable of minimiz-8

ing the full range of spatial distortions.9

Proxy and preconditioning methods. Certain geometric10

energies can be minimized indirectly by modifying a descend11

direction or by employing simpler proxy measures. For exam-12

ple, AQP [KGL16] uses quadratic proxy function whose Hes-13

sian is chosen to be the Laplacian. A weighted proxy terms is14

employed in SLIM [RPPSH17] to find a global descend direc-15

tion, while AKVF [CBSS17] employs a preconditioning tech-16

nique derived from Killing vector fields [SBCBG11]. Although17

these methods are scalable to large datasets, they consider only18

certain classes of problems; e.g., AKVF considers isometric19

distortions for codimension-zero target meshes, SLIM mini-20

mizes isometric and certain conformal energies.21

Related problems. The mapping problem can be ex-22

presses in other forms than do not evolve direct optimization23

of (2). Among them are discrete versions of the classical mass24

transportation problem employed in [SDGT12], [SCL∗17] and25

[SCQ∗16] for hexahedral, tetrahedral and triangular meshes,26

respectively. Some methods operate on metric domains, e.g.,27

using a circle parking metric to model Ricci flow on discrete28

surfaces [ZGZ∗14]. Discrete Ricci flow achieves the targeted29

metric conformal to the original by obtaining an user-defined30

distribution of Gaussian curvatures at vertices. The method31

of [ZLYG09] computes Beltrami coefficients to obtain quasi-32

conformal map with given eccentricity. Since this approach is33

based on solving Beltrami equation, it does not extends directly34

to volumes. Despite some similarities, the above problems are35

formulated in a different manner, and thus are not compared36

with our algorithm in this work. For example, mass transporta-37

tion methods usually operate over the space of volume preserv-38

ing maps and their aim is to minimize a transportation cost func-39

tion. While our method is capable of approaching volume pre-40

serving maps, it does not support transportation cost objective41

functions, since they are not invariant to translation and rota-42

tions. Nevertheless, the above methods can be integrated into43

our framework in the initialization stage.44

2. Distortion measures45

Generally, we consider two function spaces for the continu-46

ous Problem 1: locally injective continuous and locally injec-47

tive smooth mappings between domains in Rn, shortly referred48

to as deformation and smooth deformation functions, respec-49

tively. [For formal mathematical definitions see Appendix A.]50

Since continuous mappings are more general, we first define51

a general concept of the distortion measures for deformation52

functions which are not necessary differentiable. The concept53

is based on basic geometric assumptions that include:54

• According to (1), distortions are densities of geometric en- 55

ergies, therefore they are local measures of a mapping. 56

• If a mapping f is differentiable, then distortions of f are 57

independent of its higher order partial derivatives. 58

• Geometric energies are characterized by changes in intrin- 59

sic geometry under a mapping. Therefore, distortions are 60

invariant to a particular choice of orthogonal coordinates. 61

We formalize the above observations as follows: 62

Definition 2.1. A quantity dist( f ,x), for a deformation function 63

f and a point x in its domain, is called a first order distortion 64

measure of f at x, or for short a distortion, if the following 65

conditions are satisfied: 66

1. First order precision: Assume that f ,g are deformation
functions defined over a common domain S . If f (x)−
g(x) = o(‖x− x0‖) for x0 ∈ int(S), then

dist( f ,x0) = dist(g,x0).

2. Invariance to compositions with rigid transformations:
If f is a deformation function defined in S and T1,T2
are rigid coordinate transformations (i.e., compositions of
translations and unitary linear operators), then for each
y ∈ T1 (S)

dist(T2 ◦ f ◦T−1
1 ,y) = dist( f ,T−1

1 (y)).

In other words, the position and orientation of coordinate 67

frames (of both the domain and the image) have no impact 68

on distortions measured at the respected points. 69

Definition 2.1 is, in turn, an algebraic description of very 70

large set of geometric measures and it is particularity useful 71

for theoretical analysis of various problems. In practice, how- 72

ever, dealing with smooth deformations and their discrete ap- 73

proximations requires a more compact formulation of distor- 74

tions. Notably, according to the following theorem, distortion 75

measures restricted to smooth deformations can be equivalently 76

characterized by the Jacobian singular values: 77

Theorem 2.1. A first order distortion measure, dist( f ,x), can
be expressed as a function of singular values of the Jacobian
d fx, i.e.,

∃D : Un→ R, dist( f ,x) =D (σ1(d fx), ...,σn(d fx)) ,

where Un is the half space below the main diagonal of Rn,
namely

Un , {x ∈ Rn|x1 ≥ x2 ≥ . . .≥ xn > 0} . (5)

[For proof see Appendix B.] 78

Restricting distortion measures to smooth deformations im- 79

mediately implies the opposite version of Theorem 2.1. 80

Theorem 2.2. Let D : Un→ R be a function. Then,

dist( f ,x) =D (σ1(d fx), ..,σn(d fx))

is a first order distortion measure for smooth deformations. 81
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Fig. 2: Distortion measures visualized for the bar deformation.

Consequently, according to Theorems 2.1 and 2.2, we can1

uniquely identify each n-dimensional distortion dist( f ,x) for2

smooth deformation f with a scalar function D : Un → R.3

We call the latter the canonical representation of a measure4

dist(·, ·).5

2.1. Examples of distortion measures6

Following the definition, distortion values of a map f can7

be intuitively interpreted as measures of f ’s rigidity. Rigid8

transformations form the space of length-preserving (isomet-9

ric) maps which, in turn, is the intersection of two sets contain-10

ing angle-preserving (conformal) and volume-preserving (equi-11

volume) maps. Thus, distortions incorporate the following ma-12

jor groups: length-wise measures, angle-wise measures and13

measures based on assessments of local volumes. In view of14

the above observations, we recall the differential definitions of15

isometric, conformal and volume-preserving mappings, formu-16

lated for smooth deformations as follows:17

A smooth deformation f is a conformal mapping of a domain
S ⊂Rn if for each point x∈ int(S) it scales the space uniformly
in every direction. This can be stated formally as

‖d fx ·u1‖= ‖d fx ·u2‖ , (6)

where d fx denotes the Jacobian matrix at a point x of function
f and u1,u2 ∈ Rn are arbitrary unit vectors. Following this no-
tation, a conformal map f (x) is isometric in S if

∀x ∈ int(S) : |detd fx|= 1 , (7)

where (7) alone defines a class of volume-preserving, or18

equi-volume transformations.19

While there is an abundance of conformal mappings in 2D,
general higher dimensional domains can be mapped only quasi-
conformally, which means that condition (6) is satisfied only
partially. In this case we say that the mapping produces con-
formal distortion of the space. Applying the same terminology
for isometries and equi-volume maps, yields the concepts of
isometric and volume distortions, respectively. These quanti-
ties are local properties associated with a spatial deformation
between given source and target regions. As shown by Theo-
rem 2.1, we can express distortions of Euclidean space under a
mapping f as a simple function of singular values of Jacobian

σi = σi(d fx) for i = 1, ...,n.

Since the equivalent condition for a smooth f to be conformal
is

σi = σ j, for 1≤ i, j ≤ n ,

vi

r

f (vi)

sim ( )f r
sim ( )f r

f (vi)

fcr

si

vi

fc

Fig. 3: Simplicial mapping of a cell and the corresponding constructions.

conformal distortions are, in fact, estimates of the variation of 20

singular values and they are often measured by the following 21

quantities: 22

• Quasi-conformal (qc) dilatation

K( f ,x), max

{
σ1 · · ·σn−1

σnn−1 ,
σ

n−1
1

σ2 · · ·σn

}
,

often defined as

K( f ,x) = max{KI( f ,x),KO( f ,x)} , (8)

where KI and KO are the so-called inner and outer qc- 23

dilatations. These quantities can be visualized as volume 24

ratio between a small ellipsoid, obtained by mapping an 25

infinitesimal sphere under f , and its inscribed and circum- 26

scribed balls. 27

Quasi-conformal dilatations are often employed in math- 28

ematical analysis of qc-mappings; notably they are useful 29

in estimations of geometry-dependent bounds of confor- 30

mal distortions. 31

• Condition number, also called linear dilatation

κ( f ,x),
σ1

σn
, (9)

which is the ratio between the maximal and the mini- 32

mal singular values. Appears as a metric of conformal 33

distortion in [AL13, KABL14] for dimensions n = 2,3 34

(κ( f ,x) = K( f ,x) in 2D). This quantity is often employed 35

in numerical analysis and other disciplines outside the ge- 36

ometry scope. 37

• MIPS energy, defined in 2D as

MIPS2D( f ,x),
σ1

σ2
+

σ2

σ1
=

σ2
1 +σ2

2
σ1σ2

. (10)

Although historically MIPS is refered to as “most isomet-
ric parametrizations”, this energy measures how σ1 dif-
fers from σ2, and thus it is a metric of conformal distor-
tion. The energy were extensively employed in early mesh
processing applications, since for the discrete problem (4)
MIPS2D( f ,v) is proven to be locally convex as the func-
tion of a single vertex image f (v) [Hor01] . MIPS can
be extended to n-dimensions as n-times the ratio between
arithmetic and geometric means of σ2

1, . . . ,σ
2
n

MIPSnD ,
σ2

1 + · · ·+σ2
n

(σ1 · · ·σn)2/n =
trace(d f T

x d fx)

|det(d fx)|2/n . (11)
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We now consider metrics of the isometric distortion which are1

direct measures of the rigidity. Since singular values of an isom-2

etry equal 1, these distortions assess the deviation of (σ1, ...,σn)3

from the vector (1, ...,1), most commonly, using the following4

quantities:5

• Quasi-isometric (qi) dilatation

C( f ,x), max{σ1 ,σ
−1
n } , (12)

where σ1 and σn are, actually, local measures of the expan-6

sion and the contraction of the space, respectively. This7

measure is used in both theoretical studies [Car74] and in8

practice [NSZ16, KABL15], where it is often normalized9

according to the relative sizes of the source and target do-10

mains.11

• Rigidity energy, also often called ARAP (as rigid as pos-12

sible) energy, was initially introduced for 2D surfaces13

[SA07] and its direct extension to Rn is defined by14

EARAP( f ,x),
n

∑
i=1

(σi−1)2 . (13)

• Symmetric rigid energy, also called symmetric Dirichlet
energy (see the discussion in Appendix C) can be defined
in Rn by

ESD( f ,x),
1

2n

n

∑
i=1

(
σi

2 +σi
−2) . (14)

Finally, if f is equi-volume in the vicinity of x, then

|det(d fx)|= σ1σ2 · · ·σn = 1 .

Hence, for estimation of the volume distortion (area distortion
in 2D) we employ the following measure

V ( f ,x), max
{
|det(d fx)| , |det(d fx)|−1} , (15)

where |det(d fx)| and |det(d fx)|−1 can be considered as assess-15

ment of the dilatation and compression of a local volume, re-16

spectively.17

Another measure widely used in applied geometry is Dirich-
let energy. This energy, also referred to as the smoothness en-
ergy, is traditionally employed in construction of harmonic sur-
face parametrization. Few approaches extend it to volumetric
domains [WGY∗03, LGW∗07]. We suggest the following di-
rect extension of the Dirichlet energy density to n-dimensions:

EDirichlet( f ,x) =
1
n

n

∑
i=1

σi
2 . (16)

Obviously, the above quantities are formulated for the n-18

dimensional case, where in dealing with actual planar and vol-19

umetric distortions we take n = 3 and n = 2, respectively. The20

above distortion metrics are visualized in Fig. 2 using a simple21

example of deforming rectangular bar in 3D.22

Note that minimizing different metrics of the same distortion23

may lead to distinct results as illustrated in Fig. 12 for C( f ,x)24

f

Ring( )v  Ring ( )f v

v ( )f v y

 Img v yf

y

Fig. 4: Construction of the mapping fv7→y defined according to (26) in the ring
of the neighboring vertices of v (a 2D case is illustrated).

and EARAP( f ,x) measures. Although both measures represent 25

isometric distortion, C( f ,x) depends only on σ1 and σn, while 26

ARAP energy is a function of all singular values, and thus it 27

considers n independent directions of the space. 28

Note that the deformation function space, and thus the entire 29

Problem 1, are highly non-convex, since for any deformation f 30

in the space the line (1−λ) f +λ(− f ) contains a singular map. 31

Since simplifying the original problem and restricting geomet- 32

ric measures are beyond our goals here, the above discussion 33

does not analyze which distortions are convex. For such analy- 34

ses, the reader may refer to convexification or preconditioning 35

methods where distortion convexity plays a substantial role. For 36

example, consider an approximation of extremal qc-mappings. 37

In this case, SDP employs the condition number because it is 38

a quasi-convex function of the singular values, while SLIM is 39

applicable for minimizing the MIPS energy, since it is locally 40

convex with respect to a single target vertex in 2D. 41

2.2. Simplicial mappings 42

First, we consider a discrete representation of a n- 43

dimensional deformation f : S → T , denoted by f = 44(
f (1), ..., f (n)

)
. We represent the source domain as a simpli- 45

cial mesh (V,C), where V is the set of vertices and C is a set of 46

oriented simplices, called cells, that constitute a triangulation 47

of S. We use general formulations for dimension n≥ 2, where 48

a cell is a n-simplex which in geometric terms is a convex hull 49

of n+1 vertices in Rn. 50

We approximate f on a cell c = (v1,v2, ...,vn+1) by the affine
function fc that satisfies fc(vi) = f (vi) for each i. Then, a piece-
wise affine function

fsim :
⋃
c∈C

c→ Rn, fsim(x) = fc(x) for x ∈ c ,

is called a simplicial map. It can be obtained in cell c as a linear
blending of the samples f (v1), ..., f (vn+1) as follows: if r is a
point inside c, then

fsim(r) = λ1 f (v1)+λ2 f (v2)+ ...+λn+1 f (vn+1) , (17)

where λ1, ..,λn+1 are barycentric coordinates of r, i.e.,

n+1

∑
j=1

λi = 1 and
n+1

∑
j=1

λivi = r . (18)

Practically we are interested in 2D and 3D cases, where C is a 51

set of triangles and tetrahedrons, respectively. In these dimen- 52

sions we use the following constructions (Fig. 3) 53
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• In 2D: Let µi be the edge of a triangle c against vi, and si1

be a vector along the outwards facing normal of µi, such2

that ‖si‖= length(µi).3

• In 3D: Let µi be the face of tetrahedron c against vi, and4

si be a vector along the outwards facing normal of µi such5

that ‖si‖= area(µi).6

Then, for n = 2,3 the value of a simplicial map at r ∈ c is

f (i)c (r) =
1

nvolume(c)

n+1

∑
j=1

(vn+1− r) · s j f (i)(v j) , (19)

and rows of the Jacobian d fc are gradients

∇ f (i)c =
−1

nvolume(c)

n+1

∑
j=1

s j f (i)(v j), i = 1, ...,n . (20)

This scheme for Jacobian computation can be obtained equiva-7

lently by solving linear systems (17) and (18), or by computing8

gradients of the, so called, hat functions that constitute the basis9

of the simplicial mapping space.10

Finally, choose a distortion measure and express it as a func-
tion D of the Jacobian singular values. Then, in the cell c the
distortion has a constant value

dist( fc) =D (σ1(d fc), . . . ,σn(d fc)) . (21)

The distortion at v ∈ V can be therefore estimated by the
weighted average

dist
w
( fsim,v) = ∑

c∈Cell(v)
w(c,v)dist( fc) , (22)

where Cell(v) is a set of the neighboring cells sharing v
and w(c,v) are positive weights. The most widely employed
weights are the uniform w(c,v) ≡ 1, volume weights w(c,v) =
volume(c) and the average volume weights:

w(c,v) = |c|−1 volume(c) , (23)

where |c| denotes the number of vertices in c.11

The above numeric scheme for planar deformations can be12

employed directly for simplicial maps between 3D triangular13

meshes (i.e., triangular meshes embedded in R3). The only dif-14

ference that should be considered in (19) is that on surfaces si15

are defined on a general plane containing a 3D triangle c. In this16

case σ3(d fc) = 0, and therefore we set dist( fc) = D(σ1,σ2),17

where D is a given 2D distortion metric.18

3. Minimizing distortion measures19

We look for simplicial mappings that approximate solutions20

of (2). Let us reexamine (4) by employing the notion of simpli-21

cial map f of a mesh (V,C), the concept of distortion measure22

dist( f ,x) and its estimates on vertices defined by (22). Then,23

the discrete energy involved in (4) can be rewritten as follows:24

E( f ) = ∑
v∈V

ω(v)dist
w

( f ,v) (24)

= ∑
c∈C

w(c)dist( fc) , (25)

Algorithm 1: Minimization of distortion measures
Input:
• Source mesh (V,C) and set of fixed vertices Vfix.

• Initial simplicial map f0.

• Distortion measure dist( f ,x) for the minimization.

• Cell and vertex weights: ω(v) and w(c,v).

• Maximal number of iterations N and convergence
threshold ε.

1. dist( f−1)←∞, i← 0.

2. W (c)← ∑
v∈c

ω(v)w(c,v) for each c ∈ C.

3. dist( f0)← Σ
c∈C

W (c)dist(( f0)c).

while i≤ N and dist( fi−1)−dist( fi)> ε do
fi+1←GreedyGradDescent(V,Vfix,C,dist, fi,ω,w) ;
dist( fi+1)← Σ

c∈C
W (c)dist( fi+1,c) ;

i← i+1 ;

Output: Simplicial map fi obtained at the last iteration

where, according to (22), we set1

w(c), ∑
v∈c

ω(v)w(c,v) .

Eventually, the optimal mapping problem is reduced to mini-
mizing E( f ), equivalently defined by (25) and (24), under the
constraints

f (Vfix) = f0(Vfix) ,

where Vfix ⊂ V is the set of vertices where f is fixed and f0 is a 25

given initial deformation. 26

To resolve the problem, we consider a local approach based
on the fact that a displacement of a vertex v inside the hull of its
neighboring cells does not affect values of dist( f ,u) if u does
not share a common cell with v. Denote by Ring(v) the set of
the neighboring vertices of v, called the ring of v, and denote
by Ring(v) the hull of the ring, namely

Ring(v) =
⋃

c∈Cell(v)

c.

Then, we solve the following formal problem for a vertex v

argmin
y∈Ring( f (v))

dist
w
( fv 7→y,v), (26)

where fv7→y denotes the simplicial map obtained by restricting
f to fixed values on Ring(v) and setting fv7→y(v) = y (see Fig.
4). Our aim is to minimize E( f ) locally by solving (26) for
each v ∈ V \Vfix. Practically, we prefer a greedy approach to

1Taking average volume weights and ω(v)≡ 1 implies w(c) = volume(c).
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Fig. 5: Minimizing distortions under fixed boundary constraints. The initial map f0 is shown on top left. First two rows illustrate result of Algorithm 1 for different
distortions, including comparison between GD and BFGS solvers for iterations 1-3. Arrows point from the image of f0 to the image of the optimal deformation
obtained after 6 iterations. Cross sections are colored according to distortions per tetrahedron. The third row shows the comparison of our algorithm with related
methods. Note that AQP method was employed indirectly via minimization of isometric distortion and that LBD method failed to reduce condition number while
preserving the boundary constraints.

the problem; i.e., we optimize at each step vertex v ∈ V \Vfix
that achieves the maximal distortion

max
v∈V\Vfix

ω(v)dist
w
( f ,v) .

Then, we fix the position of f (v) to the attained solution of (26)1

and continue to the next ring, until f is fixed on all vertices.2

Our implementation supports GD (gradient descent) and3

BFGS [WN99] methods for solving (26). Both methods achieve4

very similar numerical results, while BFGS is more computa-5

tionally expensive 2. The procedure for gradient descent is pre-6

sented in Algorithm 2, where the notion ∇ dist( f ,v,y)|y= f (v)7

refers to the gradient of the function dist( fv7→y,v) computed at8

y = f (v). The whole procedure is repeated by Algorithm 1 till9

the energy E( fi) converges or till the maximal number of iter-10

ations is reached. Eventually, the output of the whole process11

2Similarly, the Newton method is not efficient in our case; it requires heavier
numerical computations than GD, and it cannot boost the convergence due to
the highly non-convex structure of the general problem.

is a simplicial map fN that depends on the following input pa- 12

rameters: initial simplicial map f0 of the mesh (V,C); canoni- 13

cal representation of distortion measures D(σ1, ...,σn); spatial 14

constraints expressed by the set of the fixed vertices Vfix; vertex 15

weights ω : V → (0,∞) indicating the “distortion costs” over 16

the target domain and the cell weight w(c,v) used in the esti- 17

mation of distortions on vertices. 18

Further, we present a number of applications based on Al- 19

gorithm 1 that include: deformation of meshes, mesh gener- 20

ation, improving volumetric parametrization and mapping sur- 21

faces with complex topology structures. The quantitative results 22

of our applications are depicted using average distortion values 23

over the volume of a source domain. To avoid a long list of 24

parameters employed for each result, we assume uniform ver- 25

tex weights (i.e, ω(v) ≡ 1), average volume cell weights (23) 26

and the use of the gradient descent solver (Algorithm 2), unless 27

stated otherwise. 28

The complexity of each iteration of Algorithm 1 is m log(m) 29

with respect to the number of vertices, and the total number 30

of iterations depends on geometric complexity. For instance, 31
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Fig. 6: Unconstrained minimization of conformal distortion K( f ,x) in 2D (top)
and in 3D (bottom). Initial shear mapping of square and cube are shown above
plots, and images of deformations fi for chosen iterations are depicted below.

as illustrated in Fig. 5, if f0 is injective, then the optimization1

process converges after a few iterations. However, as seen in2

Fig. 10, the presence of self intersections and nearly singular3

cells slows down the process in 3D. Note that according to Fig.4

8 this impact on the performance is not significant in 2D.5

Since using analytic SVD computations for 3× 3 matri-6

ces is impractical, the general implementation of Algorithm 27

computes distortion gradients numerically using the Forward-8

Backward Euler scheme.9

Fig. 6 illustrates the process of minimizing conformal distor-10

tion without constraints (i.e, Vfix = ∅) in 2D and in 3D. Appar-11

ently, the resultant process is a conformal flow of Im( f0),i.e., a12

movement of vertices toward the image of the nearest confor-13

mal map. We chose a simple case, where source domains are a14

square and a cube, and initial deformations are shear transfor-15

mations. As Fig. 6 illustrates, our algorithm in 3D leads to a16

rotation and a slight uniform scaling of the input cube, wheres17

in 2D the input square is slowly deformed into a different shape.18

These results emphasize the fundamental difference between19

the continuous plane, where any pair of simply-contained do-20

mains can be mapped conformaly onto each other, and higher21

dimensions, where conformal mapping are restricted to the lim-22

ited set of Möbious transformations.23

3.1. Parallelization24

One of major advantages of our local approach is that Algo-
rithm 1 can be naturally parallelized by dividing source domain
into sub regions. Let denote by a 4-tuple P = ( f0,V,C,Vfix) a

Algorithm 2:
GreedyGradDescent(V ,V0,C,dist, f0,ω,w)
Input:
• Source mesh (V,C) and initial map f0 fixed on V0.

• Distortion dist( f ,x) in the canonical representation.

• Vertex weights ω(v) and cell weights w(c,v).

Initialize: V f ix←V0, f ← f0.

while VrV f ix 6= ∅ do
vmax← argmax

v∈VrV f ix

ω(v)dist
w
( f ,v);

repeat
∇←∇ dist

w
( f ,vmax,y)

∣∣∣
y= f (vmax)

;

Using line search choose ∆t such that
( f (vmax)−∆t∇) ∈ Ring( f (vmax)) ;

Refine f at vmax : f (vmax)← f (vmax)−∆t∇;
until Convergence of dist( f ,vmax);
V f ix←V f ix∪{vmax} ;

Output: Simplicial map f obtained by optimizing f0.

problem of minimizing dist( f ,x) on a mesh (V,C) under fixed
vertices Vfix and inital map f0. The problem can be processed
in parallel as series of sub-problems:

Pi = ( f0,i,Vi,Ci,Vfix∩Vi) , i = 1, ...,k, (27)

where (Vi,Ci) are sub-meshes with disjoint cells that constitute 25

a partition of (V,C) and f0,i denotes the restriction of f0 to Vi. 26

The parallel optimization is valid as long as the simplicial 27

mappings for each Pi coincide on their common vertices Vcom 28

(these that belong to at least two sub-meshes). Our approach, 29

presented in Algorithm 3, ensures the validity by switching 30

sequentially between optimization of Vcom and other vertices. 31

Each iteration in Algorithm 3 first optimizes (V∂,C∂) mesh that 32

covers common vertices. Then, V∂ are fixed and problems of 33

(27) are solved in parallel via Algorithm 2 (for short we dropped 34

some input parameters of Algorithm 2, including cell and vertex 35

weights). In order to use efficiently available resources for par- 36

allel computations it is necessary to satisfy |V∂| = o(max |Vi|). 37

If this criterion is not met, then optimization of (V∂,C∂) can be 38

run in parallel via the recursive call of Algorithm 3. Note that 39

mapping update steps in Algorithm 3 are not necessary if the 40

mesh slice dataset is shared between multiple threads. 41

Tests of Algorithm 3 were carried out using a spatial parti- 42

tion of the source domain with varying resolution and number 43

of sub-meshes (k). The results are shown in Table 1 for 10−4
44

convergence threshold. For high resolution models the best re- 45

sults we achieved with k equals the number of available CPU 46

cores. However, in low-to-middle resolution models, taking k 47

as a half core number attains the best results due to the multi- 48

thread initialization cost and un-parallel optimization of Vcom 49

vertices. According to the results, even the single-thread Algo- 50

rithm 1 achieves superior performance compared with related 51

methods which do not support parallel computing. 52
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3.2. Stability and injectivity1

The gradient descent allows minimization of arbitrary dis-2

tortions. However, to ensure stability and injectivity one should3

consider a certain subset of measures, referred to as regular dis-4

tortion measures (RDM).5

Suppose that we deal only with smooth bijective maps. Then,6

dist( f ,x) is normalized if it is minimal when f is rigid in a7

neighborhood of a domain point x and the distortion is infinite8

if d fx is singular or infinite, except when all singular values9

approach 0 or ∞ simultaneously (it may occur, for example,10

under a conformal inversion on a sphere). We call dist( f ,x)11

smooth if it is a smooth function with respect to variations in12

f and x. We call it symmetric, if dist( f ,x) is symmetric with13

respect to inversion of f , i.e., dist( f ,x) = dist( f−1, f (x)). A14

distortion is considered to be RDM if all three conditions of15

normalization, smoothness and symmetry are satisfied.16

Normalized distortions follow a general expectation about17

the cost of "week" and "strong" space deformations, while18

symmetric distortions equally penalize on scaling and shrink-19

ing and thus are more stable during optimization. Minimiz-20

ing non-symmetric measures may lead to undesirable shrinking21

and scaling if the boundary is not properly fixed. Consequently,22

non-symmetric measures are often substituted by their symmet-23

ric analogues, e.g., symmetric Dirichlet energy (14).24

Using mathematical tools presented in Appendix A and Ap-25

pendix B, the above distortion properties are generalized for en-26

tire space of deformation functions (see Definition C.1). More-27

over, according to (C.2) and Corollary C.1, RDM measures28

approach infinity when an optimized vertex in Algorithm 229

crosses its 1-ring. Therefore, high values of the gradient point-30

ing outward near ring boundaries avoid singularities, self in-31

tersections and flips of cells. Consequently, if we consider32

only RDM, then Algorithm 1 preserves orientation and local33

injectivity of f0. This restriction has only limited impact on34

the algorithm applicability, since most non-RDM measures em-35

ployed in the practice have “geometrically equivalent” RDM36

analogues. E.g., (16) and (13) can be substituted by (14) and37

(12), respectively.38

Furthermore, according to (C.7) and (C.8) the gradient de-39

scent for RDMs is well defined even if a metric D has non-40

differentiable points and the process is stable for arbitrary con-41

straints. Most importantly, according to [AL13], positively ori-42

ented simplicial maps are globally injective if they are injective43

on the boundary. Hence, in the RDM case, a sufficient condi-44

tion for global injectivity are the positivity of an initial defor-45

mation and injectivity on the boundary ∂S. If f0 is positive and46

1:1, then the second condition is obviously fulfilled for fixed47

boundary constraints. For more general constraints we employ48

a basic voxel traversing algorithm to find intersections between49

boundary faces during the line search stage of Algorithm 2. The50

length of a line search segment for unfixed boundary vertices is51

reduced if it intersects ∂S (see Fig. 7). Moreover, if Vi = ∂V is52

incorporated into the mesh partition, then the above procedure53

can be integrated efficiently into parallel Algorithm 3.54

On the other hand, the above property of RDMs prevents55

the gradient descent from repairing self intersections between56

cells if the initial map is not locally injective. In these cases a57

Fig. 7: Preserving global injectivity in tet meshes by employing ray tracing
between boundary vertices.

Algorithm 3: ParallelGradDescent (V ,Vfix,C, f0)

Input:
• Source mesh (V,C) and initial map f0 fixed on Vfix.

• Mesh partition {(Vi,Ci)}k
i=1 with initial maps { f0,i}k

i=1.

1. Vcom← vertices that belong to at least two sub-meshes.

2. C∂← cells that share Vcom vertices.

3. V∂← vertices of C∂.

4. f0,∂← f0 restricted to mesh (V∂,C∂).

5. j← 0.

repeat
f j+1,∂←Minimize

(
f j,∂,V∂,C∂,Vfix∪ (V∂/Vcom)

)
;

for i=1,...,k in parallel do
Set f j,i to be equal to f j,∂ on Vcom;
f j+1,i←Minimize( f j,i,Vi,Ci,(Vfix∪Vcom)

⋂
Vi);

Update f j+1,∂ on V∂/Vcom.
j← j+1

until Convergence of
k
∑

i=1
dist( f j,i);

6. f j←Mapping of (V,C) obtained from f j,1, ..., f j,k.

Output: Mapping f j that minimizes a given distortion.

combination of the given distortion and other non-RDM penalty 58

measures can be employed to repair self intersections and flips. 59

Another approach to handling bad initializations is to perform 60

alternating optimization of RDM and non-RDM measures. 61

4. Applications 62

4.1. Deformation of triangle and tetrahedral meshes 63

We first experiment with deformation of planar meshes. Fig. 64

8 demonstrates optimal deformations of an elephant model by 65

applying Algorithm 1 with respect to various distortion mea- 66

sures under fixed boundary constraints. Given the source mesh 67
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Fig. 8: Minimizing distortions for planar meshes. The boundary was fixed for all methods except AKVF* which denotes unconstrained AKVF (with free boundary).
The source mesh, the initial map f0 and the resulting deformations after 5 iterations of our Algorithm 1 are shown from left to right in the first two rows.

with m vertices, the initial deformation f0 is computed as1

follows: using [CWKBC13] method we construct boundary-2

to-boundary mapping and then produce the target mesh with3

m vertices by triangulating the domain contained inside the4

boundary; f0 is defined by a coarse correspondence between5

the source and target interior vertices. We also distort shapes of6

target triangles in Im( f0) by adding a few iterations of a noise7

to positions of the interior vertices. As illustrated by Fig. 88

after few iterations of our algorithm we obtained global mini-9

mizers (up to negligible numeric errors) in all three cases, i.e.,10

an area-preserving, isometric and conformal mappings, respec-11

tively. As emphasized in Fig. 8 the image of optimal deforma-12

tion consists of almost regular triangles, meaning a high quality13

of the output mapping.14

Note that fixed boundary constrains in the plane left no free-15

dom for interior triangles to be resized during the optimization;16

hence output mappings for both conformal, and area (V ( f ,x))17

distortions appear almost visually indistinguishable from each18

other. As shown in Fig. 8, our algorithm achieves better re-19

sults than AQP for both isometric and conformal minimizations, 20

similar results compared with LBD, SPD ans SLIM, whereas 21

AKVF failed to reduce isometric distortion below its initial 22

value under the fixed boundary and BD failed in both cases. 23

Next, we experiment with minimizing distortions on sur- 24

faces. As shown in Fig. 9, we use our algorithm to improve 25

harmonic disc parametrization for non-regular meshes, where 26

classical cotangent weighted harmonic maps produce artifacts. 27

By randomly displacing target vertices of the face model we in- 28

tensify initial distortions to extreme values (up to 1018). Never- 29

theless, as depicted in Fig. 9, our algorithm attains almost per- 30

fect parameterization after 20 iterations. As shown in the loga- 31

rithmically scaled distortion plot, other state-of-the-art methods 32

fail or obtain significantly inferior results. 33

The main reason for poor results of AKVF, BPFB and SLIM 34

in Figs. 8 and 9 is that these methods use global descent ap- 35

proaches. Although each of the methods employs a differ- 36

ent algorithm to compute descend directions, all of them try 37

to deform mesh elements simultaneously in a single direction. 38
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Fig. 9: Improving surface parametrizations via minimizing the product K( f ,x)C( f ,x) and the conformal distortion K( f ,x) for the face and hand models, respectively.
Multiplying isometric distortion by K( f ,x) results in a better alignment of vertices placed between small and large target triangles. The boundary is fixed to its
initial position only for the hand model. The isometric distortion plot depicts C( f ,x) in the logarithmic scale.

C
on

fo
rm

al
 d

is
t.

1

2
distortion (Our)

1

3

0 4

distortion 
(BD)

4

Fig. 10: Tet meshes of (from left to right) source domain, cross section of the image of the deformation obtained by BD method; cross section of the image of the
deformation obtained by our algorithm, where the BD result is taken as the initial mapping. Optimizations were performed with fixed boundary constraints.

This strategy may work well when the optimization results in1

a smooth synchronized deformation. However, an noisy initial-2

ization produces large number of both regular and nearly sin-3

gular simplices with chaotic gradients. In this case, a global4

descent process can be stuck easily in a line search stage. Since5

our algorithm is based on a local approach, it is much less sen-6

sitive to geometric noise and sparsity.7

Finally, we test our method for deformations of volumetric8

models. As illustrated in Fig. 10, taking the result of [AL13]9

method as the initial deformation and then applying our algo-10

rithm significantly reduces conformal distortion. Fig. 5 depicts11

series of distortion minimizations for the initial radial mapping12

f0(x) = x‖x‖ of a cube under fixed boundary constraints along13

with the plot of distortion values per each iteration. We com-14

pared our algorithm with state-of-the-art methods in Fig. 5 us-15

ing the condition number (9) as a metric of conformal distor-16

tion, since except our work there is no method for minimizing 17

more complicated metrics like K( f ,x) in 3D. As demonstrated 18

by the figure, our method produced results that are favorable 19

both visually and numerically. Furthermore, our technique can 20

be particularly useful in modeling of surfaces and volumetric 21

objects. Compared with related works, it applies to a wider set 22

of geometric energies. As summarized in Figs. 12 and 7, em- 23

ploying different weights ω(v) and distortion measures along 24

with their combinations produce a variety of volumetric shapes. 25

26

4.2. Triangular and tetrahedral meshing 27

By studding Figs. 5 and 8, our conclusion is that if a source 28

mesh is regular and distortions dist( f0,v) for boundary vertices 29

are low, then minimizing distortions under fixed boundary con- 30

straints produces a nearly regular target mesh. To emphasize 31
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Fig. 11: Initial parametrization (left) is optimized (middle); next a high-resolution mapping obtained by repetitively subdividing the source and target triangles as
depicted on top right. The plot (right bottom) shows distortions as functions of Loop subdivision iterations applied on the optimized map.

this observation, we compare resultant target meshes of a radial1

shape from Fig. 5 and a similar shape in 2D with state of the2

art methods of tetrahedral and triangular meshing, respectively.3

The results are shown in Fig. 15, were each pair of meshes4

contains nearly the same number of cells. We employed edge5

aspect ratio per vertex and the average tetrahedron aspect ratio6

as measures of the mesh quality. As shown by the figure our7

approach, based on ether isometric or conformal distortion8

minimizations, achieves favorable results.9

4.3. Optimization and mesh subdivision10

We tested the effect of surface subdivision on distortion op-11

timization and found that subdividing both source and target12

meshes of an optimal map is a fast and accurate approximation13

of the optimal map in higher resolution. Indeed, most subdi-14

vision schemes tend to smooth out surface triangulation, lead-15

ing to more regular triangles. A mapping between nearly regu-16

lar simplices produces low conformal distortions due to shape17

similarities. If a subdivision process is scale invariant, then it18

preserves scale ratio between source and target triangles. There-19

fore, most subdivision methods preserve low conformal and low20

isometric distortions. In the basic linear subdivision scheme,21

shown in Fig. 11, each triangle is divided through its edge mid-22

dle points. In this case, the resultant total distortion for any23

measure dist( f ,x) is identical to the original one (for proof see24

Appendix D). Fig. 11 depicts an optimized face parametrization25

subdivided by this scheme. We also applied the Loop subdivi-26

sion scheme [Loo87] on this example and found that it slightly27

reduces distortions (see the plot in Fig. 11). However, using28

a mesh subdivision directly for the optimization is impractical29

due to the exponential growth in the number of triangles.30

4.4. Volumetric textures for surface mapping31

Our method for optimizing tetrahedral domains can be em-32

ployed on surfaces via a deformation of the enclosing volumes.33

This approach is highly advantageous on surfaces with complex34

topology, such as gyroid surfaces shown in Fig. 13. Gyroid-35

based structures have a great importance in 3D printing and36

material engineering applications (e.g., 3D graphene assembly37

[QJKB17]), but due to the high genus these surfaces cannot be38

mapped by standard techniques for triangle meshes. Even ad- 39

vance algorithms for n-genus manifolds are not efficient in this 40

example. 41

However, consider the following procedure: construct a tet 42

mesh (V,C) that contains the triangulated surface S and repre- 43

sent surface vertices by their barycentric coordinates (18) with 44

respect to their parent tetrahedrons. In other words, a surface 45

is represented as a volumetric texture. Then, a simplicial map 46

of (V,C) constructed by our algorithm, can be effectively ap- 47

plied for S, resulting in a low distortion deformation of the sur- 48

face into a desirable shape. Moreover, the runtime and accu- 49

racy of this procedure depend entirely on resolutions of S and 50

(V,C). Thus, its performance is independent of the geomet- 51

ric complexity. The first application illustrated in Fig. 13 is 52

the mapping of cubic gyroid into a spherical shape induced by 53

minimizing isometric distortion of the bounding volume. We 54

use method [NSZ16] of star-shaped domain parametrization to 55

construct the initial map. The second application illustrates a 56

similar process of mapping volumetric structure from a cube 57

to a head model. We employ in this process an inverse mass 58

transportation [GLSY13] as the initial deformation. 59

Furthermore, as illustrated in Figs. 13 and 14 our algo- 60

rithm can be used for improving existing surface and volumetric 61

parametrization techniques, including basic methods that do not 62

require heavy computations. 63

4.5. Implementation and performance 64

We have written our algorithm interface in MATLAB, while 65

critical parts of the code were implemented in C++. 66

Table 1 summarizes the performance of our algorithms in 67

comparison with related approaches. The behavior of related 68

geometry optimization methods indicates that there exists a 69

trade-off between geometric precision and the runtime. For ex- 70

ample, according to Fig. 5 the closest result to our algorithm 71

was achieved by [KABL14] method that suffers from a slow 72

performance of SDP solvers. 73

Since significant part of our C++ code were automatically 74

translated from MATLAB, we expect that a manual implemen- 75

tation of the entire algorithm in C/C++ will lead to much faster 76

performance. 77
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Fig. 12: Deformations of the volumetric bar (top) obtained via minimization of various distortion measures (shown per row) under constrained positions of bar’s
left and right edges. Columns correspond to different vertex weights: uniform, weights concentrated near the edges and weights concentrated at the middle.
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Fig. 13: Mapping of topologically complex gyroid surface (left) and generating a volumetric structure (right), using optimal deformations of the bounding volumes.
Volumetric deformation for gyroid surface was obtained by minimizing isometric distortion under fixed “boundary-to-boundary” constraints for a parametrization
of a bounding cube to a ball (left top). Volumetric deformation of a cube to the head model was obtained via minimization of conformal distortion for inverse mass
transportation of tetrahedral mesh to a cube (right top).

5. Conclusion1

We have presented a framework for mapping and deform-2

ing discrete geometric data based on minimization of distortion3

measures. Our algorithm is easy to reproduce for a parallel run,4

and its implementation does not require external optimization5

tools like SDP and large scale linear solvers employed in re-6

lated methods. We have shown that our technique can outper-7

form existing algorithms in terms of runtime performance and8

geometric accuracy. Moreover, our algorithm can be further im-9

proved in a straightforward manner by employing analytic gra-10

dient approximations and by optimizing parallel computations11

as discussed in Section 3.1.12

Despite the relative simplicity of our approach, the underly-13

ing steepest descent techniques were not analyzed properly in14

the previous studies presented in the literature. Our work closes15

the gap trough a formal analysis of deformations and funda-16

mental geometric measures involved in the optimization. Our17

approach is very general and can be extended to higher dimen-18

sions and by employing local coordinates to manifolds.19

We employed our method so far in a collection of geometry20

processing problems. We expect to find more applications in21

related fields, including medical imaging and computer vision.22

In particular, we expect that computing distortions of optimal23

deformations between 3D objects can be applied in change de-24

tections and geometric similarity assessments.25

Fig. 14: Parametrization to a ball from Fig. 13: method of [NSZ16] (left) and
parametrization improved by Algorithm 1 (right).
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Table 1: Conformal optimization for meshes of 0.8K (shown in Fig.5), 6K and
50K tets. Runtime measures for Intel i5-5590 (4 Cores) are shown in seconds
for Algorithm 1 (1 thread) and for Algorithm 3 for parallel processing of 2
and 4 segments. Note, that comparison with BD is unfair, since its numerical
results are much worse than ours. Our algorithm achieves the same results for
6K mesh after a one second. We did not compare runtime with AQP and LBD,
since these methods failed to reduce distortions below the initial level.

Method Tet mesh 1 thread 2 threads 4 threads

Our

0.8K 0.2 0.2 0.7

6K 11.2 6.5 7.4

50K 107 59.6 49.4

BD

0.8K 4.8

6K 11.5

50K 120

SDP

0.8K 33.7

6K 328

50K 2235

Fig. 15: Meshes produced via minimizing distortions by Algorithm 1 (left) and
state-of-the-art algorithms “tetgen” [Si09] and “mesh2D” [Eng09] applied for
obtaining tet and triangle meshes, respectively. The table contains average cell
aspect ratios and colors are according to edge aspects.

Appendix A. Formal definitions1

Deformation functions and smooth deformations considered2

in Section 3 are formally defined as follows:3

Definition A.1. Let S be a proper domain of Rn, namely,4

S ⊂Rn is a compact set with a non-empty interior. Then, a con-5

tinuous function f :S →Rn is called a local diffeomorphism (or6

smooth deformation) if for each x ∈ int(S) there is a neighbor-7

hood, called a local neighborhood of f at x, where f is a smooth8

bijective mapping with a smooth inverse.9

Similarly, a continuous function f is called a local homeo- 10

morphism (or a deformation) if for each x ∈ int(S) there is a lo- 11

cal neighborhood Nx such that f |Nx
is a homeomorphism, i.e., 12

f |Nx
is continuous bijective mapping. 13

We denote by Hom(Rn) and Def(Rn) the set of deformation 14

functions and the set of smooth deformation functions of proper 15

domains in Rn, respectively. The interior of a proper domain of 16

a function f ∈ Hom(Rn) will be denoted by Dom( f ). 17

Following the above notations, distortion measures are for-
mally defined as functions

dist : { ( f ,x)| f ∈ Hom(Rn), x ∈ Dom( f )}→ R ,

and the first order precision property of Definition 2.1 is for- 18

malized as follows: Assume that f ,g ∈ Hom(Rn) coincide 19

on x0 and have a common local neighborhood N of x0. If 20

f (x)−g(x) = o(‖x− x0‖) in N, then dist( f ,x0) = dist(g,x0). 21

Appendix B. Canonical representations of distortions 22

Lemma 1. The Jacobian of f ∈ Def(Rn) is a full rank matrix, 23

and it therefore contains only positive singular values, denoted 24

in the descending order by σ1(d fx), ...,σn(d fx), where d fx is 25

the Jacobian matrix of f at x. 26

Based on above definitions and Lemma 1, Theorem 2.1 can 27

be formally stated and proven as follows: 28

Theorem B.1. For f ∈Def(Rn), x ∈Dom( f ), a first order dis-
tortion measure, dist( f ,x), can be expressed as a function of
singular values of the Jacobian d fx, i.e.,

∃D : Un→ R, dist( f ,x) =D (σ1(d fx), ...,σn(d fx)) ,

where Un is defined by (5) . 29

Proof. First, let us show that dist( f ,x0) = D(d fx0), that is,
dist( f ,x0) is a function of the entries of the Jacobian matrix at
x0. Since distortion measures are invariant to compositions with
rigid transformations, we assume w.l.o.g. that x0 = f (x0) = 0.
Let N0 be a local neighborhood of f at 0 and consider the linear
function g(x) = d f0x for x ∈ N0. Next, since f is diffeomor-
phism in N0 it can be linearly approximated by the first term
of its Taylor series; hence f (x)− g(x) = o(‖x‖). Therefore,
according to the 1st order precision property

dist( f ,0) = dist(d f0(·),0) ,

where d f0(·) denotes the linear function x 7→ d f0 · x. Conse- 30

quently, dist( f ,0) is a function of the entries of Jacobian d f0. 31

Finally, let d f0 = UΣV T be SVD of the Jacobian. Then, the
second property of Definition 2.1 applied for rigid transforma-
tions T1 =V, T2 =UT yields

dist(d f0(·),0) = dist(Σ(·),0) ,

where Σ is a diagonal matrix diag(σ1(d f0), ...,σn(d f0)) and the 32

singular values (σ1(d f0), ...,σn(d f0)), put in the descending or- 33

der, constitute, according to Lemma 1, an element of Un. 34

35
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Appendix C. Regular distortion measures1

Definition C.1. Let dist(·, ·) be distortion measure and letD be2

its canonical representation. We call dist(·, ·) a a regular distor-3

tion measure (RDM) if the following properties are satisfied:4

1. Normalization. Distortion measure dist( f ,x) is called
normalized if dist( f ,x) ∈ [m,∞) for any f ∈ Def(Rn) ,
x ∈ Dom( f ) and the following conditions are met:

dist(IdD,x)≡ m ,∀x ∈ int(D) , (C.1)
D(σ1, . . . ,σn)→∞ when σn→ 0 and σ1 > ε > 0;

(C.2)

where IdD denotes the identity function of a proper domain5

D. Usually, minimal distortion values are m = 0 or m = 1.6

2. Symmetry. We call f † a local inversion of deformation f ,7

if for each x ∈Dom( f ) there are local neighborhoods X of8

f at x, and Y of f † at y = f (x), s.t., ( f |X )−1
= f †|Y . If for9

any f ∈ Def(Rn)10

dist( f ,x) = dist
(

f †, f (x)
)
, ∀x ∈ Dom( f ) , (C.3)

then dist(·, ·) is called symmetric. In other words, sym-11

metric distortions do not distinguish between mapping a12

source into a target domain and the vice versa deforma-13

tion.14

3. Smoothness: A distortion measure dist( f ,x) is called15

smooth ifD is a smooth function a.e. (almost everywhere).16

Corollary C.1. Immediate consequences of Definition C.1 are:17

1. Each of the following properties is equivalent to (C.1):18

D(1,1, ...,1) = m , (C.4)
∀T -rigid : dist(T,x) ≡ m . (C.5)

2. The symmetry is equivalent to

D(σ1, . . . ,σn) =D
(

1
σn

, . . . ,
1

σ1

)
∀σ ∈ Un . (C.6)

3. If dist(·, ·) is symmetric, then (C.2) implies

D(σ1, . . . ,σn)→∞ when σ1→∞ and σn < N <∞.
(C.7)

Proof. By Definition 2.1 and Theorem B.1, dist(T,x) =19

dist(T−1 ◦ T,x) = dist(IdD,x) = D(1, ...,1). Therefore, (C.1),20

(C.4) and (C.5) are equivalent. The second proposition follows21

from the fact that if σ1, . . . ,σn are singular values of full rank22

d fx, then σ−1
n , . . . ,σ−1

1 are singular values of d f−1
x . The third23

proposition is the immediate consequence of (C.6).24

Intuitively, we expect a small discrepancy in dist( f ,x) when
ether f or x are slightly changed. Clearly, if dist(·, ·) is smooth,

then it is continuous in both f and x 3. We require C1 con-
tinuity of D to ensure that the gradient descent processes is
well defined. Since many known distortion measures are set
as a maximum of several functions, it is important to relax the
smoothness condition to be defined almost everywhere. In this
case, we can define the gradient even for a non-smooth point x
using the weak derivative

∂dist( f , ·)
∂h

∣∣∣∣
x
, limsup

ε→0

dist( f ,x+ εh)−dist( f ,x)
ε‖h‖

. (C.8)

Appendix D. Subdivision and distortion preservation 25

Denote by f and g the original map and the map subdivided 26

by the scheme shown in Fig. 11 (top-right), respectively. 27

Proposition D.1. E( f ) = E(g), where E is th energy (25) with 28

the weights w(c) = area(c). 29

Proof. Following the annotation of Fig. 11, denote by c,c′ and 30

τ,τ′ two pairs of source-target cells that belong to original and 31

subdivided meshes, respectively. The triangle middle point the- 32

orem implies that c and c′ are divided into congruent triangles, 33

respectively. Therefore, dist(gτ) are identical for any τ con- 34

tained in c and it is enough to proof dist(gτ) = dist( fc) for τ 35

chosen as in Fig. 11. Assume w.l.o.g. O = O′ = (0,0,0), then 36

gτ and fc are linear and gτ(B) = gτ(2A) = 2gτ(A) = B′. Sim- 37

ilarly, gτ(D) = D′ which implies gτ = fc and w(c)dist( fc) = 38

∑
τ⊂c

w(τ)dist(gτ) for any cell c, thus E( f ) = E(g). 39
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