Anti-spoofing in Face Recognition Systems based on Projective Invariants and Stereo Recording

Alexander Naitsat and Yehoshua Y. Zeevi

Introduction

- Problem: How to detect a spoofing attack in authentication systems based on automatic face recognition.

- Model-based solutions: Semi-automatic, unreliable.
- Deep learning solutions: Require large datasets, generalize poorly.
- Our hybrid approach: Automatic, inexpensive, do not require large datasets, works in indoor and outdoor settings.

Projective invariants

- Five point cross-ratio

$$
\begin{aligned}
& \text { 3D points: } \gamma\left(P_{1}, P_{2}, \ldots, P_{5}\right)=\frac{A_{514} A_{523}}{A_{513} A_{524}} \quad \begin{array}{c}
A_{i j k}=\text { area of } \\
\Delta\left(P_{i}, P_{j}, P_{k}\right)
\end{array} \\
& \text { 2D points: } \gamma\left(P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{5}^{\prime}\right)=\frac{A_{514}^{\prime} A_{523}^{\prime}}{A_{513}^{\prime} A_{524}^{\prime}}
\end{aligned}
$$

- Five point projective invariants

$$
\gamma\left(P_{1}, P_{2}, \ldots, P_{5}\right)=\gamma\left(P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{5}^{\prime}\right)
$$

Five point invariants for anti-spoofing

- Stereo recording with projective invariants

1. Select 5 non-coplanar facial landmarks $\left\{x_{i}(t), y_{i}(t)\right\}_{i=1}^{5}$
2. Measure cross-ratios $\gamma_{1}(t)$ and $\gamma_{2}(t)$ from two cameras
3. Compare $\gamma_{1}(t)$ and $\gamma_{2}(t)$ using per-frame calibration

- Per-frame calibration

1. Predict landmark positions of the mean face using NHCS
2. Compare predictions with cross-ratio differences

$$
\left|\gamma_{1}^{\text {spoofed }}-\gamma_{2}^{\text {spoofed }}\right|<\varepsilon \Delta q, \quad\left|\gamma_{1}^{\text {real }}-\gamma_{2}^{\text {real }}\right|>r \Delta q
$$

Generalized algorithm

Future work

- Single movable camera
- Better landmark detector
- 3D face reconstruction
- Several subsets of facial landmarks
- More parameters for the model

References

Naitsat, A., Zeevi, Y. Y Face anti-spoong based on projective invariants. ICSEE (2018). International Conference on the Science of Electrical Engineering.
Tadas Baltrusaitis, Peter Robinson, and Louis-Philippe Morency. Openface: an open source facial behavior analysis toolkit. In Applications of Computer Vision (WACV), 2016 IEEE.
Feng, Yao, et al. "Joint 3d face reconstruction and dense alignment with position map regression network.
" Proceedings of the European Conference on Computer Vision (ECCV). 2018 .

