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a b s t r a c t

We present a new quantitative method for detecting changes in 3D medical images.
The dissimilarity between shapes is quantified as a measure of the effort it takes to
deform one 3D region into another. Our main tool is an assessment of conformal and
isometric distortions of mappings between volumes. Unlike most existing techniques for
shape comparison, our algorithm operates both on triangular and tetrahedral meshes,
and therefore can be applied both for closed simply connected surfaces, as well as for
volumetric domains homeomorphic to a ball, with geometrically complicated boundaries.
Furthermore we extend our main geometric distortion measure to higher dimensions, in
a manner that allows for the dealing with spatial data at the maximal, as well as at all the
lower dimensions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Voxel-based morphometry (VBM) is one of the most popular methods for detecting brain differences between two
or more groups of subjects [1]. This fully automated method makes it possible for researchers with various expertise to
perform reproducible studies that identify neuropathological abnormalities in patientswith various neurological syndromes,
e.g., depression, autism, and epilepsy [2]. However, VBM lacks the robustness necessary for individual comparisons, due to
the fact that its group-wise smoothing and registration smear subtle individual differences. Additionally, VBM can only
provide voxel-wise comparisons, but reveals no geometric distortions.

Numerous surface-based techniques have been developed to investigate shape changes. These techniques include
conformalmapping, see, e.g. [3] and surfacematching, such as [4], amongmany others. Surface-based analysis offers accurate
shape representation to detect subtle shape changes. Nevertheless, this type of approaches is insensitive to volumetric
changes caused by gray matter atrophy widely discovered in physiological diseases [2].

The present paper is, divided, essentially, into two parts. In the first part we propose a new geometric approach, based
on quantitative evaluation of deviations from the behavior of conformal and isometric mappings in Euclidean space, to the
problem of detecting volumetric changes for individual comparisons inmedical images. Our input data is assumed to be a set
of volumetric domains, or a set of simply connected closed surfaces that enclose well defined interior volumes. In order to
detect discrepancies between geometric structures, we consider the energy or effort required to deform one 3D domain into
another. In the second part we propose an extension of the main geometric approach to higher dimensions that enables us
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to properly deal with spatial data, at all the intermediate dimensions. Finally, an Appendix summarizes higher dimensional
versions of the main invariants employed in the first part of the paper, as well as listing a number of related invariants that
appear in the Imaging and Graphics literature.

2. Mathematical background

In this section we introduce the main mathematical notions that reside behind the change detection method we propose
in the present paper, mainly the notion of deformation of a domain in Rn, as well as the notion of quasiconformal mapping.
While we do this for a generic dimension n, we shall concentrate first on the case n = 3, and only later return to the higher
dimensional one.

We formally define a a deformation function f : D → Rn to be a local diffeomorphism of an open domain D ⊂ Rn, i.e. for
each point in x ∈ D there exists a neighborhood of x where f is a smooth bijective mapping with a smooth inverse. Denote
the set of the deformation functions by Def(Rn). Moreover, since the Jacobian of a deformation is a full rank matrix, it has
only positive singular values.

A homeomorphic deformation f of a domain D ⊂ Rn is called a a conformal mapping if for each point x ∈ D it locally
scales the space uniformly in every direction. This can be stated formally as

∥dfx(h1)∥ = ∥dfx(h2)∥, (1)

where dfx denotes the Jacobianmatrix of a function f : D → Rn, at a point x, and h1, h2 ∈ Rn are arbitrary unit vectors. Using
this notation, we can bring also the next essential definitions for us: A conformal deformation f (x) of a domain D ⊂ Rn is
called volume preserving (or equi-volume deformation) if

∀x ∈ D : |det dfx| = 1. (2)

A volume preserving conformal mapping is called an isometry.
While conformal mappings are abundant in 2D (in fact, they are, at least in the planar case, rather generic), volumetric

domains can be mapped in general only quasi-conformally (see e.g., [5]), which means that the condition (1) is replaced by
the uniform comparability of ∥dfx(h1)∥ and ∥dfx(h2)∥, for all unit vectors h1, h2 ∈ R, with some constants depending on x. In
this case we say that the mapping produce conformal distortion of the space. Applying the same terminology for isometries
yields the concept of the isometric distortion.

We refer to conformal and isometric distortions as a local metric distortions. These represent local measures associated
with a spatial deformation between given source and target regions. Using the Euclidean metric, we can express the
volumetric distortions as simple functions of the singular value of deformation’s Jacobian. The advantage of this method
over other techniques that are used in volumetric modeling (e.g., discrete harmonic energy [6]) is that we can employ the
same framework to deal with a wide range of spatial distortions and energies. For instance, the aspect-ratio distortion [7],
several types of the rigid and affine energies considered in [8], the n-D conformality distortion [9], the angle and volume
energies [10], all of which are expressed as functions of singular values. (See Appendix for the precise definitions of these
notions.)

We summarize below the main mathematical definitions of volumetric distortions associated with f ; for details and
the theoretical background see [11] (as well as [12] and [13] for some first applications of these notions). While we restrict
ourselves to the 3-dimensional case, these notions readily generalize to higher dimensions—see Section 7 aswell as Appendix
for the n-dimensional versions of these and of related invariants employed in the Imaging and Graphics literature.

The local conformal distortion of a quasiconformal map f : D ⊆ R3
→ R3, at point x, is measured by the so called

quasi-conformal (qc) dilatation K (x, f ):

K (x, f ) = max
{

|det (dfx)|
σ3 (dfx) 3 ,

σ1(dfx)3

|det (dfx)|

}
; (3)

where σ1(dfx) and σ3(dfx) denote the maximal and minimal singular values of dfx, respectively. The minimal number K
that satisfies condition (2) for all points x is called the dilatation of f and it is denoted by K (f ). (A somewhat more general
definition, for all dimensions n, is given as condition (17) in Section 7 below. However, we do not bring here themost general
form of the definition, since its technicality goes beyond the scope of this applicative papers—for details see, e.g. [11,14])

Alternatively, the conformal distortion can be estimated via the linear dilatation

H(f , x) =
σ1(dfx)
σ3(dfx)

. (4)

(See also Appendix for the notation and terminology used in Imaging for this classical invariant.)
Similarly, we define local isometric distortion by

C(f , x) = max{σ1(dfx), σ3(dfx)−1
}, (5)

and the normalized version of the isometric distortion, also known as k-bounded qi-dilatation of f by

Ck(f , x) =
C(f , x)
k(S, T )

, (6)
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where k(S, T ) measures relative sizes of source and target regions by the ratio of radii of their minimal enclosing spheres:

k(S, T ) = max
{
r(S)
r(T )

,
r(T )
r(S)

}
. (7)

To simplify numerical computations, we assume that, in our case, k(S, T ) = 1. However, to determine in the general case
the fine geometrical features of the object via the qi-dilatation, one should use the k-bounded version.

Before proceeding further, let us note that the main distortion measures introduced above are related via the following
double inequality (see also Appendix for its generalization to higher dimensions):

K (f , x) ≤ H2(f , x) ≤ C(f , x)4 . (8)

For the sake of completeness we also introduce the notion of local volume distortion. This quantity is closely related to
volume preserving transformation, defined by

V (f , x) = max{|det(dfx)| , |det(dfx)−1
|} . (9)

Global changes in the geometric structure can be assessed by the average values of the scalar functions K (f , ·) and C(f , ·).
In general, we denote the average value of a function F : D ⊂ R3

→ R by

F̄ =
1

volume(D)

∫
D
F (x)dx . (10)

Following this notation, the discrepancy between S and T is represented as a point (K̄ (f ), C̄(f )) in the distortion plane. In
particular, if K̄ (f ) = C̄(f ) = 1 we achieve the maximal resemblance between geometric structures: In this case the target
and the source regions are mutual images under a rigid transformation.

Recall that, by the classical Liouville Theorem (see, e.g., [15]), every conformal mapping of a domain in the Euclidean
space Rn, n ≥ 3 is a restriction of a Möbius transformation (i.e. of a finite composition of inversions in sphere, reflections in
hyperplanes and similarities). Therefore, preserving angles and lengths is impossible for non-trivial spatial transformations
(that is, mappings that are not Möbius transformation), we employ the resulting volumetric distortions as measures of the
effort necessary in order to deform one geometric structure into another. In particular, this approach is useful for detecting
geometric changes between similar shapes mapped onto a common target domain.

Remark 1. It is hard to avoid asking oneself the following natural question: Why should we prefer such a somewhat piece-
meal approach, instead ofmaking appeal tomore powerful, systematicmethods, such as Beltrami coefficients and Teichmülller
maps? Indeed, these approaches have been already successfully applied to similar problems [16–18]. Unfortunately, while,
as already mentioned above, there exists an abundance of quasi-conformal mappings in dimension n = 2, Mostow’s rigidity
theorem (see, e.g. [19]) implies that the Teichmülller is trivial in dimension n > 3, thus so are the associated Beltrami
coefficients. Therefore, there is no possibility of extending thesemethods to the case of volumetric (and higher dimensional)
data. However, not everything is lost: Contrary to the common philosophy there exists a local Teichmuller space. It quantifies,
one might say, the existence of a local quasi-conformal stability: Mappings that are sufficiently close to identity are obtained
via quasi-conformal deformations. (The technical definitions and proofs of the simple ideas above are quite laborious—for
more details, see [20] and the bibliography therein.)

3. Volumetric deformations

A variety of techniques for morphing of polygonal meshes are used in computer graphics for registration and similarity
assessment. However, there is no single robust algorithm to deformarbitrary surfaces one into another, and existingmethods
are all subjected to different local and global constraints, such as smoothness, convexity, various topological obstructions,
etc. The similar problem of deforming volumetric domains is even more complicated and raises serious theoretical and
technical challenges. Therefore, in order to dealwith this extended problem, a number of conventions and simplifications are
needed.

One first such assumption is that models are centered at the origin. In order to solve this issue with accessible tools, we
consider some intermediate canonical regions, such as a ball, solid cylinder or a cube.We refer to embedding of a volumetric
domain onto a canonical region as to a canonical parametrization. In particular,we are interested in canonical parametrization
into a ball, described in [12] (see also [5]). This parametrization technique constitutes, essentially a stretching of lines
segments connecting the origin with the boundary. It can be expressed in spherical coordinates as

(r, ϕ, θ ) ↦→

(
rR

d(ϕ, θ )
, ϕ, θ

)
, (11)

where d(ϕ, θ ) is a distance from the origin to the farthest point on the boundary, measured along the radial angle ̸ (ϕ, θ ),
and R is a radius of the bounding sphere, estimated as a half of the longest diagonal of the bounding box.
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Fig. 1. Illustration of a star-shaped domain S that meets the geometric condition ̸
(
0p, TpS

)
≥ α > 0 for all p ∈ ∂S.

If the source domain S ⊂ R3 is star-shaped at the origin, namely, if for any p ∈ S: the line segment 0p is also in S , then
the resulting mapping is onto. Moreover, (11) can be generalized to the following family of mapping onto a ball

fa(r, ϕ, θ ) =

(
R
(

r
d(ϕ, θ )

)a

, ϕ, θ

)
, a > 0 . (12)

Caraman [5, p. 408] has shown that fa is qc-conformalmap of int(S) for a > 0 (and thus it is a diffeomorphism) if the following
geometric condition is fulfilled: S is star-shaped at the origin and for any p ∈ ∂S the angle between the line segment 0p and
tangent plane TpS at p is larger than or equal to some constant α > 0 (see Fig. 1).

Remark 2. Note that, while ostensibly the process we are describing evaluates the distortions of maps, rather than the
geometry of the given spacial domain, by using mappings to a canonical domain (a ball), one actually estimates the quasi-
conformal distance, so to say, between the given domain and the canonical one. Given that the mapping is both optimal and
unique (which is not true formappings between arbitrary domains) in case of the ball (see, e.g. [11]), this distortion, called the
coefficient of quasi-conformality represents a measure of the quasi-conformal divergence of the given shape (domain) from
the standard one, namely the ball. Let us also note that such an approach, namely representation on a standard ‘‘screen’’
(here, a ball) a common approach in Imaging Sciences. Moreover, as a mathematical idea, it can be traced back to one of the
very definitions of conformality for planar mappings due to Ahlfors [21].

We should add that, both fromapurelymathematically viewpoint, aswell as for practical reasons, it is useful (and, indeed,
natural) to consider, in certain cases, mappings to other standard domains, such as cones or cylinder (for instance, in the case
of the hippocampus this last one could arguably be a natural choice). In such cases, the coefficient of quasi-conformality can
be computed via one of the considered target domains, for which ready formulas are available (see [5]). Certainly, in our case,
a departure from optimality of the mapping arises due to the need to pass via the canonical form via a somewhat heuristic
procedure. (See also discussion in the sequel regarding the minimization of the distortion during the initial mapping.)

4. Discrete computations

A common way to represent volumetric data for numerical computations is to triangulate a continuous region D into
tetrahedrons. This is a standard yet powerful technique applicable for various 3D structures. The resulting discrete object is
called a tetrahedral mesh; formally it is defined as a 4-tuple (V , E, F , T ), where V , E, F and T denote the vertex, edge, face and
tetrahedon sets of the mesh, respectively.

Employing this approach to approximate a continuous deformation f yields a piecewise affine transformation fs of the
mesh interior, called a simplicial map. For a vertex v ∈ V located at the position x, we set fs(v) = f (x). Next, we extent fs to the
interior of tetrahedra by 3D barycentric coordinates. According to [13] the gradient of a component f (i)s inside a tetrahedral
cell τ is

∇f (i)s (τ ) = −
1

3 · volume(τ )

∫
j=1

4∑
sj f (i)s (vj) ; (13)

where v1, . . . , v4 are vertices of τ , and sj is the area of the face against vj multiplied by its unit normal; see Fig. 4. All three
components for (i) = x, y, z are then combined to construct a constant Jacobian matrix inside τ , denoted by dfs(τ ). The
Jacobian matrix at a vertex v ∈ V is approximated by the weighted average of dfs(τ ) over the neighboring tetrahedrons.
The corresponding numerical schemes were detailed in [12]. The last step in the estimation of the volumetric distortions
K (f , v) and C(f , v) for each vertex, is to perform an SVD decomposition of the resulting Jacobianmatrices, and substitute the



A. Naitsat et al. / Journal of Computational and Applied Mathematics 329 (2018) 37–50 41

(a) Original shape. (b) Canonical form. (c) Volumetric canoni-
cal form.

(d) Image of canonical
parametrization into a ball.

(e) Conformal distortion. (f) Isometric distortion. (g) Conformal distortion. (h) Isometric distortion.

Fig. 2. Demonstration of Algorithm 1 applied on a surface shown in Fig. 3c. Figs. 2c and 2d illustrate volumetric models by showing cross sections of
tetrahedral meshes. Figs. 2e and 2f depict, respectively, distribution of conformal and isometric distortions on the surface of the source domain; while
Figs. 2g and 2h show the same distribution on the target surface.

(a) 3D scatter plot. (b) 3D scatter plot.

(c) 3D scatter plot. (d) 2D scatter plot.

Fig. 3. Scatter plots of various distortion measures associated with 3 types of brain segments: brain stem, amygdala and hippocampus.
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Fig. 4. Tetrahedron mapping and the corresponding constructions.

obtained singular values into Eqs. (3) and (5). According to [13] the formula for average distortions in a discrete case is the
following approximation of Eq. (10):

F̄ (f ) ≈
1

volume(D)

∑
v∈V

F (f , v) · volume(Cent(v)), (14)

where F (f , v) is a local distortion of f at vertex v and Cent(v) is a barycentric cell of v, obtained by connecting middle points
of edges sharing v. Namely, for each cell τ in the vertex neighborhood we first construct a sub-tetrahedron by connecting v

and middle points of edges sharing v. Then Cent(v) is defined as the union of these sub-tetrahedrons over the neighboring
tetrahedra of v.

In order to finalize our algorithm for real medical data, we should resolve the following issues:

1. Construction of an appropriate deformation between volumetric objects;
2. Computation of metric distortions in a discrete case;
3. Noise reduction to achieve an acceptable level of accuracy.

Algorithm 1:Metric distortions associated with a shape
Input:

Shape S represented by a polygonal mesh

1. Compute canonical form of S

2. Generate tetrahedral meshM = (V , E, F , T ) contained in the canonical form

3. Construct mapping fs of M to a ball by (11)

foreach τ ∈ T do

Estimate dfs(τ ) according to (13)

foreach v ∈ V do

Compute average Jacobian matrix at v

Compute K (fs, v) and C(fs, v)

4. Estimate average distortions K̄ (fs) and C̄(fs) according to (14)

Output:

Average metric distortions K̄ and C̄
associated with S
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Fig. 5. Comparison between left and right hyppocampuses for healthy subjects and epileptic patients. Segments are represented on the distortion plane
according to Algorithm 1.

5. Noise reduction

Like most computational techniques, our method of shape comparison may also be affected by the given level of noise.
In [13] a typical noise was modeled as a composition of harmonic height functions on boundaries. In this case it has been
shown that the resulting error in averaging the qc-dilation is a quadratic function of the noise amplitude and a linear function
of the noise frequency. Similarly, the effect on the average isometric distortion appears to closely approximate a slowly
increasing linear function of the noise parameters. This type of the noise is produced by the given limitations in the precision
of scanning devices, hence the affected area is small relative to the dimensions of the whole region, and therefore the impact
on the algorithm is usually insignificant.

However, some artifacts, like uncertainties in segmentation process, require additional preprocessing. Employing basic
smoothing filters for artifacts removal may result in undesirable changes in geometric structures. Therefore, we took a
different approach based on the so called canonical representation of surfaces.

The canonical form of a surface is a best approximation, w.r.t. geodesic distances, of the embedding of the surface into
Euclidean space. This technique is often adopted in computer vision for complex surfaces, such as charactermodels. Notably,
employing this method for more isotropic structures that we have, provides an anti-aliasing filter for artifacts removal on
the one hand, while on the other hand it preserves inner geometry of surfaces. Clearly, here the given surface, that is the
boundary of the scanned volumetric object (e.g. hippocampus) is already embedded in R3.

Let S be a surface sampled at n points {p1, . . . , pn}. First, using the fast marching algorithm [22] we compute a metric
representation of S, which is an n × n matrix D, where Dij is geodesic distance between pi and pj. Next, we construct the
canonical mesh of S by classical multi-dimensional scaling [23]. The final outcome of the preprocessing stage is a volumetric
canonical form, namely a tetrahedral mesh contained in the fitting canonical form of a boundary surface. In our case most
canonical forms are star-shaped domains that satisfy the geometric condition illustrated in Fig. 1. Therefore, according to
Section 3, these domains are mapped quasi-conformally onto a ball by (11). Moreover, since mapping (11) preserves θ and
φ angles, the resultant distortions are independent of the domain orientation.

Algorithm 1 summarizes the main steps of our technique that includes: noise reduction, construction of volumetric
deformations and estimation of the resulting spatial distortions. These steps are illustrated in Fig. 2 and in Fig. 8 for a
hippocampus mesh and for meshes of other brain segments.

6. Experimental results

We collected 20 T1-weighted MRI images, 10 from epilepsy patients and 10 from age-matched controls. We used
Freesurfer http://freesurfer.net/ to segment hippocampal regions of all these 20 brain images and obtained their meshes,
where default parameters were applied for both segmentation and mesh generation. Subsequently, these hippocampal
meshes were deformed onto a ball, and we applied our algorithm to estimate the conformal and isometric distortions of
all left and right hippocampal regions.

We plotted the distortions in Fig. 5 by taking conformal distortions as x values and isometric distortions as y. Fig. 5a
demonstrates the distortion distributions of epilepsy patients, where crosses denote the left side, while squares are the
right side. As shown in Fig. 5a and b, the points from one side scatter along one common straight line, are indicating even
volumetric deformations from a ball. Evidently, there exist three squared points deviating from the straight line of the right
side of epilepsy patients. These points signify the abnormal volumetric deformations for epilepsy patients. Previous studies
using group analysis based on VBM reported hippocampal volume abnormalities on the ipsilateral1 side of seizure activity in

1 I.e. appearing on or affecting the same side of the body.

http://freesurfer.net/
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Fig. 6. The scatter plot depicts volumetric distortions of hippocampal regions. Two sides of the chosen individual hippocampus are highlighted in the plot
and their shapes are shown on the right.

Fig. 7. Stages of the algorithms are shown on the top: original mesh, tetrahedral mesh of a canonical form and its image under deformation (11). Scatter
plots show results of classification of brain segments: brain stem, amygdala and hippocampus.

patients [2,24–26]. It is worth noting that the hippocampal volume abnormalities or deficitswere discovered by counting the
voxels corresponding to the hippocampal regions. In contrast, we elucidate the volumetric distortions by two parameters.
Moreover, we are able to perform individual volume comparisons between two sides as given in Fig. 6, where the volumetric
deformations of both the left and right brain hemispheres of each subject are presented.

Fig. 3 shows the comparison of a few hundredsmeshes of different brain segments. Eachmesh is represented on a scatter
plot by two or three distortion measures associated with the canonical mapping of the mesh into a ball. These results were
obtained by applying, in each instance, Algorithm 1.

Compared with VBM, our approach has the merit of individual comparisons. On the other hand, this approach is likely to
rely on the quality of segmentation and generated meshes. One outlier from the control group appears in Fig. 5b, showing
great deviation. This deviation is attributed to the inaccurate segmentation for the right side of hippocampus for the subject.
Additional human inspection and algorithm validation can be included in the future work.

7. A higher dimensional distortion estimate

The approach adopted above has, as a closer examination of our method shows, a number of drawbacks. Among these,
locality is a one of them, while its dependence on smoothness (necessary on a Jacobian based approach) being another.
Nevertheless, we have seen that how to overcome these limitations in practice, at least in a partial, yet satisfactory manner.
(Smoothness, at least a.e., is also a theoretical consequence of the definition—see, e.g. [11].) However, its main detriment
resides in the fact that it is not an intrinsically volumetric method: while it incorporates in the defining Formulas (3) and
(4), it does this only directionally, without ameasure (volume form) component. Additionally, Formula (9) represents a local
condition, while the averaging Formula (10), while most natural, fails to capture the specific behavior of qc-mappings in all
the intermediate dimensions.
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Fig. 8. Comparison of KI,M for the mapping of the left-side (above), respective right-side (below) of the hippocampus of a patient. Note the discrepancy
between the two values—3520.5331 and 4433.5875, for the right-side, and left-side hemispheres, respectively, showing that even this weak upper bound
for (7) represents a potentially efficient tool in discerning certain diseases via distortions in different dimensions. Here we considered tetrahedral meshes
that were smoothened for the computation of the canonical form.

We suggest here an approach that both allows for the study of distortion in all dimensions and that, furthermore, is global
and, moreover, does not necessitate any smoothness hypothesis. The proposed method is based on yet another approach
to the definition of quasiconformality, distinct both from the analytic definition embodied in Formula (3), and the metric
definition, that stands behind Formula (3) (see also Appendix). The third manner of defining the notion of quasiconformality,
the so called geometric definition is based on the notion ofmodulus (of a family of curves):

Definition 1. Let Γ be a family of curves in Rn and let F(Γ ) the family of admissible functions for Γ , namely the family of
all Borel functions ρ : Rn

→ [0, ∞] such that
∫

γ
ρ ds ≥ 1, for every locally rectifiable curve γ ∈ Γ .

The n-modulus (which, for brevity reasons we shall refer below as simply themodulus) of Γ is defined as

M(Γ ) = inf
ρ∈F(Γ )

∫
Rn

ρndVol . (15)

It is important to note that the n-modulus represents a conformal invariant, thus rendering it as an important tool in the
study of conformal and quasiconformal mappings, hence its relevance in our present study.

The modulus is related to the dilatation K of a quasiconformal mapping via the following double inequality: if f is a
quasiconformal homeomorphism between two domains D1 and D2 in R⋉ (n ≥ 2), then

1
K
M(Γ ) ≤ M(f (Γ )) ≤ KM(Γ ) ; (16)

for every family of paths Γ in D1 (see, e.g. [27], Theorem 10.33), where K denotes, again, the dilatation of f .
Clearly, the double inequality (16) can be used to give an alternative (and equivalent) definition – the geometric

definition of quasiconformality (and, in fact, only its right-hand side suffices) – see [11]. Moreover, while clearly the actual
computation of the modulus represents a challenging problem, it turns out that for proving many of the essential properties
of quasiconformal mappings, the modulus represents the most efficient and economical, so to say, tool.

In view of the power of Definition 1 above, it is only natural to look for its extension in higher dimensions. It turns out
that, indeed, such a generalization is at hand. Evidently, instead of considering families of curves, one has to look at families
of k-dimensional hypersurfaces, and, indeed, there exists a fitting generalization of the classical Formula (16). Before being
able to formulate it we must, however, introduce some further notation:
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The numbers

KO(x, f ) =
∥dfx∥n

|det dfx|
, KI (x, f ) =

|det dfx|
l(dfx)n

; (17)

are called KO, KI denote the outer, respective inner dilatations of f ; where ∥dfx∥n
= max{dfx(h) | h ∈ Rn, |h| = 1} (the

operator norm of dfx with respect to the Euclidean norms considered, both in the domain and in the range Rn); and
l(dfx) = min{∥dfx(h)∥ | h ∈ Rn, |h| = 1}. Here we assume that dfx is not singular, a fact that holds a.e. x if f is quasiconformal.

We can now give the sought generalization of Formula (16):

inf
∫

Ω

ρn(x)
KO(x, f )

dVol ≤ M(f (Γk)) ≤ inf
∫

Ω

KI (x, f )ρn(x)dVol ; (18)

where each infimum is taken over all admissible functions for Γk, where (in a straightforward generalization of the classical,
1-dimensional case) ρ : Rn

→ [0, ∞] is called admissible for Γk if
∫
Sk

ρdAk ≥ 1, for any k-hypersurface Sk ∈ Γk; where dAk
represents the k-dimensional area element,

Remark 3. The outer and inner dilatations are closely interrelated via the following inequalities:

KO(x, f ) ≤ K n−1
I (x, f ), and KI (x, f ) ≤ K n−1

O (x, f ) . (19)

Moreover, they are also related to the quasiconformal (or maximal) dilatation K , and in fact we have

K (x, f ) = max{KO(x, f ), KI (x, f )}, . (20)

As already noted before, the actual computation of the modulus represents a quite difficult computational task, and we
deffer it for later study. However, not everything is lost and the double inequality provides us with a simple way to compute
the distortion induced by amap f in all dimensions k = 1, . . . , n−1. Indeed,while precises estimates forM(Γk),M(f (Γk)) are
hard to achieve, it is intuitively clear that the ratio of these two quantities represents a measure of the distortion produced
by f , in any dimension lower than n, and independently of the specific family of considered hypersurfaces. Therefore, it
represents a measure of distortion of f itself. We are thus conducted to propose the following

Definition 2. Let f be a homeomorphism between two domains D1 and D2 in Rn (n ≥ 2). We define the k-dimensional
modulus distortion of f , or, in analogy with the classical, 1-dimensional case, simply the k-dilatation of f as being

Mk(f ) = sup
M(f (Γk))
M(Γk)

, (21)

where the supremum is taken over all the families of k-hypersurfaces in D1.

Clearly,Mk(f ), is bounded from above, as Formula (21) shows. However, the lower bound is also important, showing that
there exists a minimal distortion as well, in any dimension, thus proving that one cannot try to achieve or even approach
isometry/conformality in any dimension smaller than the maximal one, not just for the 1-dimensional (metric) case.

Before trying to find computable bounds forMk(f ), at least in some special cases, let us first show the practical relevance
of the notion just introduced. Since in medical imaging curves distortion is only one relevant task (e.g. for good ‘‘on screen’’
estimates for diagnosis and surgery planning), we concentrate on the surfaces case (k = 2). Surfaces appear in medical
imaging as membranes - the diaphragm, the meninges and the atrioventricular and interventricular septa being exemplary
instances. They also arise, of course, as the exterior (observable) surfaces of internal organs (e.g. the prostate) or tumors. In
some instances, the organ itself, or at least its interior face is, essentially, a surface, such as in the case of stomach or of the
colon.While in theory one can computeMk(f ) for any family of surfaces, in practice one usually dealswith families of surfaces
composed of a single element (as inmost of the examples) above. However, it is important to notice that one is not restricted
to simple cases, nor just smooth ones, but can rather also study branched surfaces, by viewing them as representing a family
of intersecting surfaces. We see, therefore, that one has a wide spectrum of possible medical usages of the 2-dilatation. The
main apparent drawback of the suggested approach resides in the fact that it only holds in dimension strictly smaller than
n, thus, for Medical Imaging, it does not allow for the measurement of a ‘‘true’’ volumetric dilatation. However, in practice,
medical images, such as CT ones, are obtained during temporal processes, thus rendering an extra, time dimension, giving
the observed data a simple (product) 4 dimensional structure embeddable in R4. Thus one can view just on instance (‘‘frame’’
of the ‘‘movie’’) as 3-hypersurface in R4 and computeM3, without needing to visualize the 4-dimensional structure. Another
approachwould be to add a small, predetermined quantity of (e.g. Gaussian) noise to obtain a similar 4-dimensional product
structure that allows the computation ofM3.

Having demonstrated the relevance and potential usefulness of our proposed method, we can now concentrate on its
feasibility in practice. There are too aspects that we should address.

First, one has to agree that, clearly,Mk is problematic to compute from Formula (7) in the general case, at best. However,
for the tetrahedral meshes that constitute the substrate, so to say, of our computations, one can easily calculate

KI,M = max{KI (x, f ) | x ∈ D1} and KO,m = min{KI (x, f ) | x ∈ D1} , (22)
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thus obtaining coarse estimates forMk(f ). (An illustration showing the potential in diagnosis of these invariants is presented
in Fig. 7.)

The second aspect we should address is that of the smoothness of f . Indeed, while in many applications in Imaging,
Graphics andCAGD functions are supposed to be smooth, there is a contrast between this assumption and the type of data one
has to handle, i.e. at best polygonal/polyhedral meshes (and, in many cases, this only after highly nontrivial preprocessing).
Therefore, one is entitled and, indeed, conduced to ask whether this hypothesis cannot be weakened substantially. It turns
out that, at least for the case at hand, this is quite easy. We present here, succinctly and as simply as possible, the situation
for meshes—for the full technical intricacies in the most general case we refer the reader to [27]. We begin by making the
observation that mappings between (compact) polyhedral (and in particular, tetrahedral) meshes are not only Lipschitz but,
in fact, bi-Lipschitz (i.e. f −1 is also Lipschitz). To this end we add the extremely mild and usually encountered in practice
condition, that f produces no collapse both in a metric sense (i.e. no edge collapse), and in measure (e.g. for triangular
meshes, no triangle collapse). In this case we shall say that f has finite metric distortion and denote this succinctly by f ∈

FMD. It turns out (see [27] and the references therein) that if f ∈ FMD automatically implies that it is differentiable a.e.,
which shows that we do not have, in fact, to prescribe a priori the smoothness of our maps.

If in addition f does not collapse areas for any hypersurface Sk , k = 1, . . . , n − 1, it is called of finite area distortion (f ∈

FAD). Surprisingly enough, the condition that a bi-Lipschitz homeomorphism f has nometric collapse, suffices to ensure that
f ∈ FAD.

The importance of this result resides in the fact that, for FAD maps the desired analogue of right-side inequality in (16)
holds, namely

M(f (Γk)) ≤

∫
D1

KI (x, f )ρn(x)dVol1 . (23)

Note that, in contrast with (18), there is no inf appearing here, and not just due to passing to finite meshes. (Indeed, a min
does not appear either.)

Furthermore, a similar estimate exists forM(Γk) as well, namely

M(Γk) ≤

∫
D2

KI (y, f −1)ρn(y)dVol2 ; (24)

where here KI (y, f −1) represents a succinct notation for
∑

ξ∈f−1(y)KO(ξ, f ).
Moreover, one can extend (16) to bi-Lipschitz mappings that are not homeomorphism, by imposing the following two

conditions that, together, generalize the notion of quasiconformality:
(i) f is open, i.e. f maps open sets onto open sets;
and
(ii) f is discrete, i.e. the preimage under f of any point composed of isolated points.
Note that condition (ii) holds trivially for maps between the considered polyhedral meshes, since the preimage of

any point consists of a finite number of points. Moreover, condition (i) is easy to interpret if we restrict ourselves to
neighborhoods (of vertices): it simply states that the open star of any vertex cannot collapse under f .

We should note that allowing for condition (ii) to hold, permits us to consider maps that exhibit foldings and branchings
(and that are, in fact, quasiconformal in the classical sense away from the branching set—see [27] and the bibliography
therein).

It turns out that maps of the more general type introduced above, also satisfy a variation of (16). In fact, the left-hand
inequality holds precisely in the same form like in themore classical context, while the right-side one holds for KI (x, f ) being
replaced by KI (y, f −1) (the notation being as above).

So we see that, while by Formula (19), the inner and outer dilatations are interrelated, and with the maximal dilatation K
aswell, they are quite necessary inmeasuring the higher-dimensional distortions (dilations).Moreover, in viewof the results
above, the pair (KO, KI ) presents itself as a potentially very useful additional classifier for the shape recognition, matching
and related tasks, especially in dimensions ≥ 3, and in particular for detecting volumetric changes in volumetric data.

8. Conclusions and future work

We have presented a new quantitative method for detecting changes in volumetric models with applications to medical
imaging. Our approach is based on assessment of average conformal and isometric distortions associatedwith a deformation
of 3D segment into a ball. Since our algorithm operates on tetrahedral meshes, it can be applied on both closed simply
connected surfaces by generating interior tetrahedra, as well as in volumetric domains with more sophisticated boundaries.

Our future work is primarily aimed to improve the accuracy of the results. One main, computational approach under
current research consists in employing additional distortion measures (see Appendix) and to minimize the impact a
particular choice of the mapping has on the results.

Distortions produced by a mapping f : S → T are usually expressed via the Jacobian’s singular values (cf. Appendix
below), which in 3D are roots of a 6th-degree characteristic polynomial of dfdf T . Therefore, in general, it is hard to estimate
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the effect each deformation has on conformal and isometric distortions. A more feasible approach is to consider an optimal
mapping with respect to a chosen distortion measure D(f , x) (e.g., D(f , x) = K (x, f )):

fopt = argmin
f :S→T

∫
S
D (f , x) dx. (25)

Since fopt depends entirely on the geometry of both source and target domains, we expect that employing optimal
mappings can significantly improve the precision of Algorithm 1. We intend to obtain well approximated solutions of (25)
in the discrete case using gradient descent in conjunction with variational methods.

Another natural further direction of study would be directed to obtain better estimates (and, indeed, trying to obtain
as precise as possible computations) for the higher dimensional distortions introduced in Section 7, that is towards the
development of numerical methods of estimation (and computation) of k-dimensional moduli (with special aspect being
still placed on the classical case, that is the calculation of the modulus of curves).

We should finally note that, in view of Remark 1, not everything is lost as far as the extension to higher dimensions of
Teichmuller spacemethods is concerned. True, aswe have seen, there is seemingly no hope inmaking appeal to extensions of
the classical Beltrami coefficients. However, while the theoretical apparatus and reasoning are quite involved, the said local
deformations are geometric and quite intuitive, and furthermore, they algorithmic in nature. Thus, there exists the hope of
replacing the analytic methods of distortion minimization by a geometric approach based on the application of a sequence
of possible deformations, each reducing to a standard construct.
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Appendix

We list below the formulas for n-dimensional versions of the main invariants considered in the first part of the paper,
as well as a number of other distortion measures that were considered in the literature by various authors. We express all
these measures as functions of the singular values of Jacobian σi = σi(dfx) , i = 1, . . . , n.

We begin with the mathematical notions employed in the paper (for further details see [5,11]):
• The quasiconformal dilatation

K (x, f ) = max

{
σ1 · · · σn−1

σn
n−1 ,

σ n−1
1

σ1 · · · σn−1

}
. (26)

• The linear dilatation
It is formally defined, in a manner extendible to quite general metric spaces, as

H(f , x) ≜ lim sup
r→0

⎛⎝ max
y∈S(r,x)

∥f (y) − f (x)∥

min
y∈S(r,x)

∥f (y) − f (x)∥

⎞⎠ . (27)

If f is smooth in the neighborhood of x, then H can be expressed in terms of the singular values of the Jacobian as

H(x, f ) =
σ1(dfx)
σn(dfx)

. (28)

Note that, clearly, H(x, f ) = K (x, f ) for n = 2. Moreover, there is a direct correspondence between the facts
and notations introduced in Section 2 and those for the general, n-dimensional case. Namely, let us denote by
σ1(dfx) ≥ σ2(dfx) ≥ · · · ≥ σn(dfx) the singular values of dfx. hen ∥dfx∥ = σ1 and l(dfx) = σn(dfx). (In particular,
Eq. (4) can be written in the form employed in (28) above.) Moreover, since |detdfx| is the product of the singular
values σ1(dfx) ≥ σ2(dfx) ≥ · · · ≥ σn(dfx) of dfx, on can also express the outer and inner dilatations in terms of these
singular values, as follows:

KO(x, f ) =
σ1(dfx)n−1(dfx)

σ2(dfx) · · · σn(dfx)
, KO(x, f ) =

σ1(dfx) · · · σn−1(dfx)
σ1(dfx)n−1(dfx)

. (29)

(Formore details regarding the connections between the algebraic study of dfx via its singular values and the geometric
behavior at f at x see [11], Section 14, as well as [28].)

• The isometric distortion

C(f , x) = max{σ1 , σ−1
n } (30)



A. Naitsat et al. / Journal of Computational and Applied Mathematics 329 (2018) 37–50 49

We have the following inequalities relating between the dilatation K , the linear dilatation H and the (local) isometric
distortion C:

K (x, f ) ≤ Hn−1(x, f ) ≤ C2(n−1)(f , x) . (31)

Note that for the aforementioned Lipschitz maps, the distortion is global (and equal to the Lipschitz constant L), and
we have

K (f ) ≤ L(f )2(n−1) . (32)

To these one we can add
• The local volume distortion

V (f , x) = max
{
σ1 · · · σn,

1
σ1 · · · σn

}
(33)

The following distortions measures have been proposed in the Imaging and Graphics literature

• The Condition number, or aspect-ratio distortion
This represents nothing else than the names under which the linear distortion (in its version for smooth functions)
was recently introduced, for dimensions n = 2, 3, in the Graphics and Imaging literature [7,8,29].

κ(f , x) =

(
σ1

σn

)
.

• The n-D conformal distortion
This distortion measure was proposed in [9]. This quantity is the ratio between the arithmetic and geometric means
of the squares of singular values, namely

W (f , x) =
1
n

σ 2
1 + · · · + σ 2

n(
σ 2
1 · · · σ 2

n

)1/n ; (34)

% where σ 2
1 · · · σ 2

n denote here the eigenvalues of dfxdf Tx .
• The two measures introduced in [30]

These can be rewritten in terms of the singular values of the Jacobian as

µ(f , x) =
1
2

(
σ1 · · · σn

v
+

v

σ1 · · · σn

)
; (35)

for a constant v > 0 and as a parametric distortion measure

θµ(f , x) + (1 − θ )
1

W 2/n(f , x)
, (36)

where 1 < θ < 0. The last quantity can be interpreted as a convex combination of certain estimates of the conformal
and the volume distortions.
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