Learning Shape Symmetries and UV-maps for 3D Mesh Reconstruction

Research Internship Project

Alexander Naitsat

Mentors: Leonid Pishchulin Laurent Guigues

Learning Shape and Color Representation

- Reconstruct 3D shape & texture from RGB
- Shape-texture encoding for recognition signature
 - View invariance and consistency

Learning Shape and Color Representation

- Reconstruct 3D shape & texture from RGB
- Shape-texture encoding for recognition signature
 - View invariance and consistency
 - Shape-color uniqueness

Learning Shape and Color Representation

- I. Advance state-of-the-art
 - Standard benchmarks

- II. Supermarket scenarios
 - Synthetic data pipeline

Challenges

3D Ground Truth

- \succ synthetic data
- \succ implicit supervision

Shape-Color Decomposition

- network modularity
- flexible training
- \succ UV mapping

Consistent Representation

 \succ template deformation

R

Shape-Texture Reconstruction Overview

Narrow Domain

[Güler et al. 2018] (Denspose), [Rempe et al 2021] (HuMor)

Shape-Texture Reconstruction Overview

Narrow Domain

[Güler et al. 2018] (Denspose), [Rempe et al 2021] (HuMor) NeRF

Implicit

[Mildenhall et al. 2020], [Xie et al. 2021], [Xiang et al. 2021] [Mildenhall et al. 2020] (pix2surf), [Kanazawa et al. 2018] (CMR), [Xiang et al. 2021] (MCMR)

Mesh-Based Differential Rendering

- Single mean shape [Kanazawa et al. 2018] (CMR)
- Multiple mean shapes [Xiang et al. 2021] (MCMR)

Multi-Class Mesh Reconstruction (MCMR)

 \checkmark General representation

- ✓ Shape-texture modularity
- \checkmark Consistent representation

Multi-Class Mesh Reconstruction (MCMR)

- General representation
 Shape-texture modularity
- \checkmark Consistent representation

- \times Texture quality
 - layout
- \times Efficient 3D representation
 - class features

More Efficient Representation

 $f_2(U)$

 $\downarrow \Delta V$

Symmetry-Aware Representation

- Increase 3D accuracy for symmetric objects
- Reduces extra DoF
 - minimal network changes
 - better mesh quality

Improved Texture Mapping

• Differential Rendering Mode

Improved Texture Mapping

- Differential Rendering Mode
 - Grid vs UV-map sampling
- Texture layout
 - Symmetry-aware cut
 - Supervise UV-map quality

UV-map distortions

UV-map distortions

Minimizing UV-map distortions

Pix2Surf distortion losses

$$L_{\text{isom}} = \sum_{pk\sim ij} \left| \left\| xyz_{ij} - xyz_{pk} \right\| - \left\| uv_{ij} - uv_{pk} \right\| \right|$$

$$L_{flip}^{1/p} = \|Relu((\widehat{\Delta_1 uv} \times \widehat{\Delta_2 uv})_Z)^p\|_1$$

Bibliography

- Simoni, Alessandro, et al. "Multi-category mesh reconstruction from image collections." *3DV IEEE* 2021
- Ravi, Nikhila, et al. "Accelerating 3d deep learning with pytorch3d." arXiv (2020).
- Lei, Jiahui, et al. "Pix2surf: Learning parametric 3d surface models of objects from images." ECCV 2020.
- Liu, Shichen, et al. "Soft rasterizer: A differentiable renderer for image-based 3d reasoning." *IEEE/CVF Vision 2019.*
- Kanazawa, Angjoo, et al. "Learning category-specific mesh reconstruction from image collections." ECCV 2018.

Appendix: MCMR architecture

Appendix: Pix2Surf architecture

